description

BZOJ

题意:\(n\)堆式子,每堆石子数量为\(\le m\)的质数,对于每一个局面玩\(Nim\)游戏,求后手必胜的方案数。

data range

\[n\le 10^9,m\le 5\times 10^4
\]

solution

直接\(FWT\)多项式快速幂即可。

之前写的多项式快速幂一直是\(O(mlogmlogn)\)

然后在这一道题上\(T\)了...

\(\%\)了一发\(yyb\)的代码才知道原来可以快速幂的时候可以不用每次\(FWT\)

这样就变成\(O(m(logm+logn))\)的了

orz 神仙yyb

Code

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define Cpy(x,y) memcpy(x,y,sizeof(x))
#define Set(x,y) memset(x,y,sizeof(x))
#define FILE "a"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const int N=1<<16;
const int M=1e5+10;
const int mod=1e9+7;
const int base=26;
const dd eps=1e-6;
const int inf=2147483647;
const ll INF=1ll<<60;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
} il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
} int pri[N];bool vis[N];
il void upd(int &a,int b){a+=b;if(a>=mod)a-=mod;}
il void dec(int &a,int b){if(b)upd(a,mod-b);}
il void sieve(){
vis[1]=1;
for(RG int i=2;i<N;i++){
if(!vis[i])pri[++pri[0]]=i;
for(RG int j=1;j<=pri[0]&&1ll*i*pri[j]<N;j++){
vis[i*pri[j]]=1;if(i%pri[j]==0)break;
}
}
}
il void FWT_xor(int *a,int n,int opt){
for(RG int i=1,x,y,inv2=(mod+1)/2;i<n;i<<=1)
for(RG int j=0,p=i<<1;j<n;j+=p)
for(RG int k=0;k<i;k++){
x=a[j+k];y=a[i+j+k];a[i+j+k]=x;
upd(a[j+k],y);dec(a[i+j+k],y);
if(opt==-1)a[j+k]=1ll*a[j+k]*inv2%mod,a[i+j+k]=1ll*a[i+j+k]*inv2%mod;
}
}
int f[N],g[N]; int main()
{
sieve();RG int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
memset(f,0,sizeof(f));memset(g,0,sizeof(g));f[0]=1;
for(RG int i=1;pri[i]<=m&&i<=pri[0];i++)g[pri[i]]=1;
FWT_xor(f,N,1);FWT_xor(g,N,1);
while(n){
if(n&1)for(RG int i=0;i<N;i++)f[i]=1ll*f[i]*g[i]%mod;
for(RG int i=0;i<N;i++)g[i]=1ll*g[i]*g[i]%mod;
n>>=1;
}
FWT_xor(f,N,-1);
printf("%d\n",f[0]);
}
return 0;
}

[BZOJ4589]Hard Nim的更多相关文章

  1. BZOJ4589 Hard Nim FWT 快速幂 博弈

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...

  2. BZOJ4589 Hard Nim(博弈+FWT)

    即使n个数的异或为0.如果只有两堆,将质数筛出来设为1,做一个异或卷积即可.显然这个东西满足结合律,多堆时直接快速幂.可以在点值表示下进行. #include<iostream> #inc ...

  3. BZOJ4589 Hard Nim(快速沃尔什变换FWT)

    这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ ...

  4. BZOJ4589 Hard Nim 【FWT】

    题目链接 BZOJ4589 题解 FWT 模板题 #include<algorithm> #include<iostream> #include<cstdlib> ...

  5. BZOJ4589 Hard Nim(快速沃尔什变换模板)

    终于抽出时间来学了学,比FFT不知道好写到哪里去. #include <cstdio> typedef long long ll; ,p=1e9+; int k,m,n,a[N],pi[N ...

  6. bzoj千题计划308:bzoj4589: Hard Nim(倍增FWT+生成函数)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4589 n*m*m 做法 dp[i][j] 前i堆石子,异或和为j的方案数 第一重循环可以矩阵快速幂 ...

  7. bzoj4589: Hard Nim fwt

    题意:求n个m以内的素数亦或起来为0的方案数 题解:fwt板子题,先预处理素数,把m以内素数加一遍(下标),然后fwt之后快速幂即可,在ifwt之后a[0]就是答案了 /*************** ...

  8. BZOJ4589: Hard Nim(FWT 快速幂)

    题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...

  9. [bzoj4589]Hard Nim(FWT快速沃尔什变化+快速幂)

    题面:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 题意 求选恰好n个数,满足每个数都是不大于m的质数,且它们的异或和为0的方案数. 解法 ...

随机推荐

  1. Java子类与父类之间的类型转换

    1.向上转换 父类的引用变量指向子类变量时,子类对象向父类对象向上转换.从子类向父类的转换不需要什么限制,只需直接蒋子类实例赋值给父类变量即可,这也是Java中多态的实现机制. 2.向下转换 在父类变 ...

  2. Putty远程连接Ubuntu14.04

    步骤一.在ubuntu系统中安装ssh,可使用如下的命令进行安装: sudo apt-get install openssh-server 步骤二.为了保险起见,安装完成后重启一下ssh服务,命令如下 ...

  3. hdu2066一个人的旅行(floyd优化)

    一个人的旅行 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  4. python学习笔记02 --------------基础数据类型

    python的基本数据类型: 1.基本数据 1.1. 数字类型 1.1.1 整数 int int()           #将括号内内容转化为整数类型. 1.1.2 浮点数 float 1.1.3 复 ...

  5. Java并发基础--Lock的学习

    一.Lock的出现 Lock的主要作用实现线程之间的同步互斥,与synchronized关键字的效果是一样的,synchronized是Java语言内置的特性,那么为什么又出现了Lock呢?原因是sy ...

  6. 小球下落 (Dropping Balls,UVA 679)

    题目描述: 题目思路: 1.直接用数组模拟二叉树下落过程 //超时 #include <iostream> #include <cstring> using namespace ...

  7. appium启动APP配置参数:

    一.Android启动app   python启动脚本如下:   from appium import webdriver   desired_caps = {} desired_caps['plat ...

  8. Python基础 之 tuple类-元组 和 dict类-字典

    tuple 元组 一.tuple 类的基本属性 1.元组,有序:元素不可被修改,不能被增加或者删除tuple类 tu = (111,22,33,44) 一般写元组的时候,推荐在最后加入,和类方法进行区 ...

  9. 【shell 每日一练6】初始化安装Mysql并修改密码

    一.简单实现mysql一键安装 参考:[第二章]MySQL数据库基于Centos7.3-部署 此脚本前提条件是防火墙,selinux都已经设置完毕: [root@web130 ~]# cat Inst ...

  10. 【Linux】Face Recognition的封装

    使用虹软的人脸识别 写了一个linux下的Face Recognition的封装,当作是练习. C++的封装,结合opencv,使用方便.https://github.com/zacario-li/F ...