4765: 普通计算姬

Time Limit: 30 Sec  Memory Limit: 256 MB
Submit: 1725  Solved: 376
[Submit][Status][Discuss]

Description

"奋战三星期,造台计算机"。小G响应号召,花了三小时造了台普通计算姬。普通计算姬比普通计算机要厉害一些
。普通计算机能计算数列区间和,而普通计算姬能计算树中子树和。更具体地,小G的计算姬可以解决这么个问题
:给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权
值和。计算姬支持下列两种操作:
1 给定两个整数u,v,修改点u的权值为v。
2 给定两个整数l,r,计算sum[l]+sum[l+1]+....+sum[r-1]+sum[r]
尽管计算姬可以很快完成这个问题,可是小G并不知道它的答案是否正确,你能帮助他吗?

Input

第一行两个整数n,m,表示树的节点数与操作次数。
接下来一行n个整数,第i个整数di表示点i的初始权值。
接下来n行每行两个整数ai,bi,表示一条树上的边,若ai=0则说明bi是根。
接下来m行每行三个整数,第一个整数op表示操作类型。
若op=1则接下来两个整数u,v表示将点u的权值修改为v。
若op=2则接下来两个整数l,r表示询问。
N<=10^5,M<=10^5
0<=Di,V<2^31,1<=L<=R<=N,1<=U<=N

Output

对每个操作类型2输出一行一个整数表示答案。

Sample Input

6 4
0 0 3 4 0 1
0 1
1 2
2 3
2 4
3 5
5 6
2 1 2
1 1 1
2 3 6
2 3 5

Sample Output

16
10
9

HINT

Source

[Submit][Status][Discuss]

因为每个点的编号都是给定的,所以任何基于连续序列的数据结构(如DFS序等)都会失效(听说KDT可做),于是分块。

然后分块也是有讲究的,这题用到了一个套路:f[i][j]表示节点i到根的路径上的有多少个点在第j块中(也就是修改i节点对第j块的贡献),这个直接DFS预处理出来即可。

这样我们整块直接使用f数组,两端暴力上DFS序+树状数组即可。

友情提醒:这题爆long long 。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef unsigned long long ll;
using namespace std; const int N=;
int n,m,bl,B,u,v,l,r,cnt,tim,op,rt;
int h[N],a[N],bel[N],nxt[N<<],L[N],R[N],to[N<<],f[N][];
ll c[N],sm[],s[N],ans;
void ins(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void add(int x,ll k){ for (; x<=n; x+=x&-x) c[x]+=k; }
ll que(int x){ ll res=; for (; x; x-=x&-x) res+=c[x]; return res; } void dfs(int x,int fa){
rep(i,,B) f[x][i]=f[fa][i];
f[x][bel[x]]++; L[x]=++tim; s[x]=a[x];
For(i,x) if ((k=to[i])!=fa) dfs(k,x),s[x]+=s[k];
R[x]=tim;
} int main(){
freopen("bzoj4765.in","r",stdin);
freopen("bzoj4765.out","w",stdout);
scanf("%d%d",&n,&m); bl=(int)sqrt(n); B=(n-)/bl+;
rep(i,,n) scanf("%d",&a[i]),bel[i]=(i-)/bl+;
rep(i,,n){
scanf("%d%d",&u,&v);
if (u==) rt=v; else ins(u,v),ins(v,u);
}
dfs(rt,); rep(i,,n) sm[bel[i]]+=s[i],add(L[i],a[i]);
rep(i,,m){
scanf("%d",&op);
if (op==){
scanf("%d%d",&u,&v); add(L[u],v-a[u]);
rep(i,,B) sm[i]+=1ll*(v-a[u])*f[u][i]; a[u]=v;
}else{
scanf("%d%d",&l,&r); ans=; int x=bel[l],y=bel[r];
if (x==y) rep(i,l,r) ans+=que(R[i])-que(L[i]-);
else{
rep(i,l,x*bl) ans+=que(R[i])-que(L[i]-);
rep(i,(y-)*bl+,r) ans+=que(R[i])-que(L[i]-);
rep(i,x+,y-) ans+=sm[i];
}
printf("%llu\n",ans);
}
}
return ;
}

[BZOJ4765]普通计算姬(分块+树状数组)的更多相关文章

  1. BZOJ 4765: 普通计算姬 (分块+树状数组)

    传送门 解题思路 树上的分块题,,对于修改操作,每次修改只会对他父亲到根这条链上的元素有影响:对于查询操作,每次查询[l,r]内所有元素的子树,所以就考虑dfn序,进标记一次,出标记一次,然后子树就是 ...

  2. BZOJ 4765: 普通计算姬 [分块 树状数组 DFS序]

    传送门 题意: 一棵树,支持单点修改和询问以$[l,r]$为根的子树的权值和的和 只有我这种不会分块的沙茶不会做这道题吗? 说一点总结: 子树和当然上$dfs$序了,询问原序列一段区间所有子树和,对原 ...

  3. bzoj 4765 普通计算姬(树状数组 + 分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4765 很nice的一道题啊(可能是因为卡了n久终于做出来了 题意就是给你一棵带点权的有根树,sum( ...

  4. 【bzoj2141】排队 分块+树状数组

    题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别, ...

  5. 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu

    https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...

  6. 【BZOJ 3295】动态逆序对 - 分块+树状数组

    题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...

  7. 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树

    题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...

  8. 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)

    4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...

  9. BZOJ4765 普通计算姬(分块+树状数组)

    对节点按编号分块.设f[i][j]为修改j号点对第i块的影响,计算f[i][]时dfs一遍即可.记录每一整块的sum.修改时对每一块直接更新sum,同时用dfs序上的树状数组维护子树和.查询时累加整块 ...

随机推荐

  1. bzoj 2705: [SDOI2012]Longge的问题——欧拉定理

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  2. Spark实现销量统计

    package com.mengyao.examples.spark.core; import java.io.Serializable; import org.apache.hadoop.io.Nu ...

  3. 某p2p存在通用上传漏洞

    google链接查找: inurl:shouyi.asp inurl:itemlist_xq.asp?id= 很多存在Fckeditor上传链接: FCKeditor/editor/filemanag ...

  4. Win10下Anaconda3安装CPU版本TensorFlow并使用Pycharm开发

    环境:windows10 软件:Anaconda3 1.安装Anaconda 选择相应的Anaconda进行安装,下载地址点击这里,下载对应系统版本的Anaconda3. 运行 开始菜单->An ...

  5. 【LabVIEW技巧】代码块快速放置

    前言 之前的文章中介绍了如何使用QuickDrop来实现快速代码放置,今天我们来详细的聊一下如何进行代码块的快速放置. 正文 LabVIWE程序设计中,我们在架构层级总是进行重复性的编写.举一个例子: ...

  6. Python——turtle生成图片保存

    代码示例如下: from Tkinter import * from turtle import * import turtle forward(100) ts = turtle.getscreen( ...

  7. vue 同页面不同参数

    项目:详情页中有一个模块为更多产品,点击也是跳转到详情页,也就是相同路由,不同参数. 试过的方法:用this.$router.push,并没有任何反应,没有任何请求,页面也未重新加载,用this.$e ...

  8. http请求数据的格式

    最近看了tinyhttpd的服务器代理,看了看http请求数据包的格式和内容 http请求报包含三个部分: 请求行 + 请求头 + 数据体 请求行包含三个内容 method + request-URI ...

  9. windows下github 出现Permission denied (publickey)

    github教科书传送门:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 再学习到 ...

  10. Subsets I&&II——经典题

    Subsets I Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a s ...