【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
1 11
4 2Sample Output
1数据范围:
对于100%的数据,1 < = N , M < = 10000000HINT
Source
【分析】
本来做这题是找信心,然而。。
首先我们知道 如果x与y互质,那么x+y与y也互质。
所以只需要求$\phi(m!)* \dfrac{n!}{m!} $
问题转换成求$\phi(m!)$
我们知道一种求法,就是把$m!$分解质因数,对于每个素数乘上一个$\dfrac{p-1}{p}$
显然<=m的素数就是$m!$的分解质因数。
中间要用到的线性求逆元:
ny[1]=1;
for(int i=2;i<=Maxn-10;i++) ny[i]=(R-R/i*ny[R%i])%R;
- #include<cstdio>
- #include<cstdlib>
- #include<cstring>
- #include<iostream>
- #include<algorithm>
- using namespace std;
- #define Maxn 10000010
- #define LL long long
- int R;
- int mul(int x,int y)
- {
- LL K1=(LL)x,K2=(LL)y;
- K1=(K1*K2)%R;
- return (int)K1;
- }
- int pri[Maxn],pl;
- int ny[Maxn];
- bool vis[Maxn];
- void init()
- {
- for(int i=;i<=Maxn-;i++)
- {
- if(!vis[i]) pri[++pl]=i;
- for(int j=;j<=pl;j++)
- {
- LL K1=(LL)i,K2=(LL)pri[j];
- K1=K1*K2;
- if(K1>Maxn) break;
- vis[K1]=;
- if(i%pri[j]==) break;
- }
- }
- }
- int A[Maxn],B[Maxn];
- void get_ans()
- {
- A[]=;
- for(int i=;i<=Maxn-;i++)
- {
- A[i]=mul(A[i-],i);
- }
- int now=;
- B[]=;
- for(int i=;i<=Maxn-;i++)
- {
- B[i]=B[i-];
- while(pri[now]<=i&&now<=pl)
- {
- B[i]=mul(mul(pri[now]-,ny[pri[now]]),B[i]);
- // B[i]=((B[i]*(pri[now]-1)%R)%R)*ny[pri[now]];
- // B[i]%=R;
- now++;
- if(now==pl) break;
- }
- }
- }
- int main()
- {
- int T;
- scanf("%d%d",&T,&R);
- // memset(vis,0,sizeof(vis));
- for(int i=;i<=Maxn-;i++) vis[i]=;
- init();
- ny[]=;
- for(int i=;i<=Maxn-;i++) ny[i]=mul(R-R/i,ny[R%i]);
- get_ans();
- while(T--)
- {
- int n,m;
- scanf("%d%d",&n,&m);
- int ans=mul(A[n],B[m]);
- printf("%d\n",ans);
- }
- return ;
- }
这道恶心题又卡空间 又卡时间。
2017-02-13 13:48:22
【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)的更多相关文章
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑 欧拉函数
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...
- [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数
n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 洛谷 P2155 BZOJ 2186 codevs 2301 [SDOI2008]沙拉公主的困惑
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...
- BZOJ 2186 沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 3397 Solved: 1164 [Submit] ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
随机推荐
- Eclipse Tomcat Project报错:HTTP Status 404错误
想要在eclipse里部署tomcat,结果tomcat单独可以通过连接测试,用eclipse就404了 404肯定都是目录不对,试了半天在eclipse下改了一下配置和文件位置就行了 1.先在菜单栏 ...
- [BZOJ2754] [SCOI2012]喵星球上的点名解题报告|后缀数组
a180285幸运地被选做了地球到喵星球的留学生.他发现喵星人在上课前的点名现象非常有趣. 假设课堂上有N个喵星人,每个喵星人的名字由姓和名构成.喵星球上的老师会选择M个串来点名,每次读出一个串的 ...
- jQuery操作Table学习总结[转]
<style type="text/css"> .hover { } </style>< ...
- 对vue中 默认的 config/index.js:配置的详细理解 -【以及webpack配置的理解】-config配置的目的都是为了服务webpack的配置,给不同的编译条件提供配置
当我们需要和后台分离部署的时候,必须配置config/index.js: 用vue-cli 自动构建的目录里面 (环境变量及其基本变量的配置) var path = require('path') ...
- 【1】记一次破解wifi
当然,使用的依旧是aircrack套件,这次依旧是跑字典,今天,捉到了另一个实验室icephone的wpa握手包,我猜测实验室的wifi一般都跟自己的名字有关,icephone刚好是8位字母,于是我就 ...
- MSF爆破MSSQL
show options: msf auxiliary(scanner/mssql/mssql_login) > show options Module options (auxiliary/s ...
- 【C语言】Coursera课程《计算机程式设计》台湾大学刘邦锋——Week6 String课堂笔记
Coursera课程 <计算机程式设计>台湾大学 刘邦锋 Week6 String 6-1 Character and ASCII 字符变量的声明 char c; C语言使用一个位元组来储 ...
- Linux Platform驱动模型(二) _驱动方法【转】
转自:http://www.cnblogs.com/xiaojiang1025/archive/2017/02/06/6367910.html 在Linux设备树语法详解和Linux Platform ...
- 流程控制--if条件
/* if ....else .... */ [root@localhost test1]# vim .py //ADD #!/usr/bin/python >: print 'hello py ...
- leetcode 121 122 123 . Best Time to Buy and Sell Stock
121题目描述: 解题:记录浏览过的天中最低的价格,并不断更新可能的最大收益,只允许买卖一次的动态规划思想. class Solution { public: int maxProfit(vector ...