上一期介绍到了SPFA算法,只是一笔带过,这一期让我们详细的介绍一下SPFA。

1 SPFA原理介绍

  SPFA算法和dijkstra算法特别像,总感觉自己讲的不行,同学说我的博客很辣鸡,推荐一个视频讲解,想看点这里,算法思路如下:

  1)和dijkstra一样初始化,定义一个dis[ ]数组,除了源点赋成0之外其它点都赋成正无穷,然后定义一个队列q。

  2)把队列q的队首元素取出,标志为不在队中,将其作为中继点对这个队首元素的所有出边进行松弛操作(不知道松弛操作请看这里),修改完dis值后,判断每一个修改过dis值的元素是否在队列q中,如果不在,就放入队尾;然后判断这个数入队的次数,如果大于n(n为点的个数),那就说明出现了负权回路,算法结束,否则继续。

  3)不断循环,直到队列为空。

2 实现过程中的一些问题

  •   question:怎么标志出队?

  answer:可以定义一个vis[ ]数组,最开始全部为0,表示都不在队列中,每入队一个元素x,就把vis[x]赋成1,每出队一个元素就赋值成0。

  •   question:怎么判断一个数入队次数?

  answer:可以定义一个num[ ]数组,每入队一个元素x,就num[x]++;这个可以不写,因为题目一般不会出现负权回路。

  •   question:怎么判断队列为空?

  answer:最流行的写法是while(!q.empty()),但是不太好理解,我一般会写成while(s.size()),和前一句意思相同。

3 图解演示

  //这个图解做了一上午,可能讲的不好,不喜勿喷

4 代码奉上:

 void SPFA()
{
for(int i=;i<=n;i++)
dis[i]=inf;
queue<int>q;
q.push();vis[]=;dis[]=;
while(q.size())
{
x=q.front();q.pop();vis[x]=;
for(int i=head[x];i;i=a[i].next)
{
int s=a[i].to;
if(dis[s]>dis[x]+a[i].cost)
{
dis[s]=dis[x]+a[i].cost;
if(vis[s]==)
{
vis[s]=;
q.push(s);
}
}
}
}
}

5 算法优化

  新更博客:SPFA算法优化

【最短路径】 SPFA算法的更多相关文章

  1. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  2. 最短路径——SPFA算法

    一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都 ...

  3. 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)

    这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...

  4. 最短路径----SPFA算法

    求最短路径的算法有许多种,除了排序外,恐怕是ACM界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra,接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们 ...

  5. 最短路径SPFA算法(邻接表存法)

    queue <int> Q; void SPFA (int s) { int i, v; for(int i=0; i<=n; i++) dist[i]=INF; //初始化每点i到 ...

  6. 洛谷P3371单源最短路径SPFA算法

    SPFA同样是一种基于贪心的算法,看过之前一篇blog的读者应该可以发现,SPFA和堆优化版的Dijkstra如此的相似,没错,但SPFA有一优点是Dijkstra没有的,就是它可以处理负边的情况. ...

  7. 最短路径问题的Dijkstra和SPFA算法总结

    Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...

  8. Bellman-Ford & SPFA 算法——求解单源点最短路径问题

    Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...

  9. 最短路径算法之四——SPFA算法

    SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...

  10. 数据结构与算法--最短路径之Bellman算法、SPFA算法

    数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...

随机推荐

  1. nginx 安装 lua-nginx-module

    nginx增加lua模块 yum install -y gcc g++ gcc-c++ zlib zlib-devel openssl openssl-devel pcre pcre-devel wg ...

  2. 解决方案:WindowsError: [Error 2]

    使用Python的rename()函数重命名文件时出现问题,提示 WindowsError: [Error 2] 错误,最初代码如下: def renameFile(filename): filePr ...

  3. Item 8 覆盖equals时请遵守通用约定

    在覆盖equals方法的时候,你必须要遵守它的通用约定,不遵守,写出来的方法,会出现逻辑错误.下面是约定的内容:   equals方法实现了等价关系:   自反性.对于任何非null的引用值,x.eq ...

  4. (转)matlab练习程序(HOG方向梯度直方图)

    matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...

  5. 在电脑中配置adb

    在环境变量的系统变量path中添加SDK中platform_tools和tools的路径 如果出现version说明配置成功

  6. upupw注入by pass

    http:' and updatexml(null,concat(0x5c,(/*!00000select SCHEMA_name*/from/*!information_schema*/.schem ...

  7. bisai.py

    比赛专用py #!/usr/etc/env python #encoding:utf-8 #by i3ekr #token import re,os,requests res = "(fla ...

  8. chromedriver版本 支持的Chrome版本

    在使用selenium测试时,如果选择chrome浏览器,需要将chrome driver的exe文件放在项目下 错误的driver版本,会导致无法正常打开本机的浏览器 以下为对应关系 来自网络 ch ...

  9. 一个文档让vim飞起来

    原文地址:http://www.cnblogs.com/songfy/p/5635757.html 引言 今天我们特地来讲讲这个vim的配置. vim这东西, 很多人装逼的时候经常会提到, 不过大部分 ...

  10. python基础===两个list之间移动元素

    首先我们先了解一下list的几个常用函数: a = [123,456,"tony","jack"] #list中增加元素a.append("www&q ...