【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1475

【题目大意】

  给出一个n*n的方格,从中取一些不相邻的数字,使得和最大

【题解】

  我们可以根据i+j的奇偶性将点划分为两组,同组之间无连边,因此这是一张二分图
  我们建立源点对偶点引点权大小的流量,建立汇点,从每个奇点引点权大小的流量到汇点,
  总点权减去该图的最小割就是答案,因为最小割中的边表示了该点被选中去除,
  所有去除点和最小,那么剩下的满足限制条件的就一定是最大值了。

【代码】

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAX_V=1000;
struct edge{int to,cap,rev;};
vector<edge> G[MAX_V];
int level[MAX_V],iter[MAX_V];
void add_edge(int from,int to,int cap){
G[from].push_back((edge){to,cap,G[to].size()});
G[to].push_back((edge){from,0,G[from].size()-1});
}
void bfs(int s){
memset(level,-1,sizeof(level));
queue<int> que;
level[s]=0;
que.push(s);
while(!que.empty()){
int v=que.front(); que.pop();
for(int i=0;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&level[e.to]<0){
level[e.to]=level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f){
if(v==t)return f;
for(int &i=iter[v];i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>0&&level[v]<level[e.to]){
int d=dfs(e.to,t,min(f,e.cap));
if(d>0){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}return 0;
}
int max_flow(int s,int t){
int flow=0;
for(;;){
bfs(s);
if(level[t]<0)return flow;
memset(iter,0,sizeof(iter));
int f;
while((f=dfs(s,t,INF))>0){
flow+=f;
}
}
}
int n,a[30][30];
void solve(){
int sum=0,s=n*n,t=n*n+1;
for(int i=0;i<=t;i++)G[i].clear();
for(int i=0;i<n;i++)for(int j=0;j<n;j++){
if((i+j)%2==0){
if(i+1<n)add_edge(i*n+j,(i+1)*n+j,INF);
if(j+1<n)add_edge(i*n+j,i*n+j+1,INF);
if(i>0)add_edge(i*n+j,(i-1)*n+j,INF);
if(j>0)add_edge(i*n+j,i*n+j-1,INF);
add_edge(s,i*n+j,a[i][j]);
}else add_edge(i*n+j,t,a[i][j]);
sum+=a[i][j];
}printf("%d\n",sum-max_flow(s,t));
}
int main(){
while(~scanf("%d",&n)){
for(int i=0;i<n;i++){
for(int j=0;j<n;j++)scanf("%d",&a[i][j]);
}solve();
}return 0;
}

BZOJ 1475 方格取数(二分图最大点权独立集)的更多相关文章

  1. HDU 1565 1569 方格取数(最大点权独立集)

    HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...

  2. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  3. HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]

    嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...

  4. hdu1569 方格取数 求最大点权独立集

    题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和.思路:建图,相邻的点有一条边,则建立了一个二分图,求最大点权独立集(所取点两两无公共边,权值和最大),问题转化为求总权和-最小点权覆盖集(点 ...

  5. TZOJ 3665 方格取数(2)(最大点权独立集)

    描述 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. 输入 包括多个测试实例 ...

  6. hdu - 1565 方格取数(1) && 1569 方格取数(2) (最大点权独立集)

    http://acm.hdu.edu.cn/showproblem.php?pid=1565 两道题只是数据范围不同,都是求的最大点权独立集. 我们可以把下标之和为奇数的分成一个集合,把下标之和为偶数 ...

  7. BZOJ 1475: 方格取数( 网络流 )

    本来想写道水题....结果调了这么久!就是一个 define 里面少加了个括号 ! 二分图最大点权独立集...黑白染色一下 , 然后建图 : S -> black_node , white_no ...

  8. [BZOJ 1475] 方格取数

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1475 [算法] 首先将方格黑白染色 , 也就是说 , 如果(i + j)为奇数 , ...

  9. SCU3185 Black and white(二分图最大点权独立集)

    题目大概说有几个黑色.白色矩阵,问能选出黑白不相交的矩形面积和的最大值. 建二分图,黑色矩阵为X部的点,白色为Y部,XY的点权都为其矩阵面积,如果有个黑白矩阵相交则它们之间有一条边,那样问题就是要从这 ...

随机推荐

  1. 从C语言项目谈编程

    很多初学C语言的小伙伴,在学习之初并没有一个大概的概念,学习这门语言需要掌握多少知识点,怎么才算学的差不多? C语言的精髓点在哪? 学到多少东西才能够达到做项目的标准?学习的时候需要注意哪些细节点?疑 ...

  2. HDU 1599 find the mincost route (最短路 floyd)

    题目链接 Problem Description 杭州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为V1,V2,....V ...

  3. web_一些常用的线上脚本地址记录(个人使用)

    1.jquery <script src="http://code.jquery.com/jquery-1.4.1.min.js"></script> 2. ...

  4. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  5. 第一章:获取服务器服务banner

    #!c:\\perl\\bin\\perl.exe #读取服务器的首行(banner) use IO::Socket; my $service = '121.201.67.177:ssh'; my $ ...

  6. vue-实现倒计时功能

    JavaScript 创建一个 countdown 方法,用于计算并在控制台打印距目标时间的日.时.分.秒数,每隔一秒递归执行一次. msec 是当前时间距目标时间的毫秒数,由时间戳相减得到,我们将以 ...

  7. 网络设备之分配net_device结构

    注册网络设备时,会调用pci_driver->probe函数,以e100为例,最终会调用alloc_netdev_mqs来分配内存,并且在分配内存后调用setup函数(以太网为ether_set ...

  8. MVC使用Newtonsoft无需实体类,实现JSON数据返回给前端页面使用

    //引用using Newtonsoft.Json; using Newtonsoft.Json.Linq; public ActionResult JsonSample() { ResponseRe ...

  9. tornado 模版

    tornado 模版语法 取消转义 : 取消项目转义 :autoescape = None 取消模版转义:{% autoescape None %} 取消行转义   :{% raw bd %} 强制转 ...

  10. apusic7配置2

    1:<SERVICE class="com.apusic.web.WebService" > <ATTRIBUTE NAME="MaxWaitingCl ...