Bzoj2721 [Violet]樱花(筛法)
题面
题解
首先化一下式子
$$ \frac 1x+\frac 1y=\frac 1{n!} \Rightarrow \frac {x+y}{xy}=\frac 1{n!} \Rightarrow (x+y)n!=xy \\ \Rightarrow(n!-x)+(n!-y)=(n!)^2 $$
看到最后一个式子,由于$n!$是唯一确定的,所以只要确定了$x$,$y$也是确定的,而且是唯一确定的一组$(x,y)$。
根据唯一分解定理,$n!=p_1^{k_1}p_2^{k_2}...p_m^{k_m}\Rightarrow(n!)^2=p_1^{2k_1}p_2^{2k_2}...p_m^{2k_m}$
所以$x$的取值方案数为$\prod_{i=1}^m(2k_i+1)$
线性筛一下就好了。
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
const int N = 1e6 + 10, Mod = 1e9 + 7;
int n, k[N], cnt, prime[N], id[N], ret = 1;
inline int sqr(int x) { return x * x; }
inline void add(int &x) { x = (x + 1) == Mod ? 0 : (x + 1); }
int main () {
scanf("%d", &n);
memset(id, -1, sizeof id);
for(int i = 2; i <= n; ++i) {
if(id[i]) id[i] = ++cnt, prime[cnt] = i;
for(int j = 1; j <= cnt && i * prime[j] <= n; ++j) {
id[i * prime[j]] = 0;
if(!(i % prime[j])) break;
}
}
for(int i = 2; i <= n; ++i) {
int tmp = i;
for(int j = 1; sqr(prime[j]) <= tmp; ++j)
while(!(tmp % prime[j])) add(k[id[prime[j]]]), tmp /= prime[j];
if(tmp > 1) add(k[id[tmp]]);
}
for(int i = 1; i <= cnt; ++i)
ret = (2ll * k[i] + 1) * ret % Mod;
printf("%d\n", ret);
return 0;
}
Bzoj2721 [Violet]樱花(筛法)的更多相关文章
- bzoj2721 / P1445 [Violet]樱花
P1445 [Violet]樱花 显然$x,y>n$ 那么我们可以设$a=n!,y=a+t(t>0)$ 再对原式通分一下$a(a+t)+ax=x(a+t)$ $a^{2}+at+ax=ax ...
- 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论
题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...
- bzoj2721 [Violet5]樱花
bzoj2721 [Violet 5]樱花 给出 \(n\) 求 \(\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}\) 的正整数解数量 \(\bmod (10^9+7)\) ...
- 【BZOJ2721】樱花(数论)
[BZOJ2721]樱花(数论) 题面 BZOJ 题解 先化简一下式子,得到:\(\displaystyle n!(x+y)=xy\),不难从这个式子中得到\(x,y\gt n!\). 然后通过\(x ...
- Luogu1445 [Violet]樱花 ---- 数论优化
Luogu1445 [Violet]樱花 一句话题意:(本来就是一句话的) 求方程 $\frac{1}{X} + \frac{1}{Y} = \frac{1}{N!}$ 的正整数解的组数,其中$N \ ...
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
- Luogu P1445[Violet]樱花/P4167 [Violet]樱花
Luogu P1445[Violet]樱花/P4167 [Violet]樱花 真·双倍经验 化简原式: $$\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}$$ $$\frac ...
- luoguP1445 [Violet]樱花
链接P1445 [Violet]樱花 求方程 \(\frac {1}{X}+\frac {1}{Y}=\frac {1}{N!}\) 的正整数解的组数,其中\(N≤10^6\),模\(10^9+7\) ...
- 【筛法求素数】【质因数分解】bzoj2721 [Violet 5]樱花
http://www.cnblogs.com/rausen/p/4138233.html #include<cstdio> #include<iostream> using n ...
随机推荐
- 数据结构&图论:欧拉游览树
ETT可以称为欧拉游览树,它是一种和欧拉序有关的动态树(LCT是解决动态树问题的一种方案,这是另一种) dfs序和欧拉序是把树问题转化到区间问题上然后再用数据结构去维护的利器 通过借助这两种形式能够完 ...
- vijos 1153 背包+标记
描述 新一年度的猫狗大战通过SC(星际争霸)这款经典的游戏来较量,野猫和飞狗这对冤家为此已经准备好久了,为了使战争更有难度和戏剧性,双方约定只能选择Terran(人族)并且只能造机枪兵. 比赛开始了, ...
- Strand Sort
Strand sort是思路是这样的,它首先需要一个空的数组用来存放最终的输出结果,给它取个名字叫"有序数组" 然后每次遍历待排数组,得到一个"子有序数组",然 ...
- 【uva12232/hdu3461】带权并查集维护异或值
题意: 对于n个数a[0]~a[n-1],但你不知道它们的值,通过逐步提供给你的信息,你的任务是根据这些信息回答问题: I P V :告诉你a[P] = V I P Q V:告诉你a[P] XOR a ...
- bzoj3716/4251 [PA2014]Muzeum
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3716 http://www.lydsy.com/JudgeOnline/problem.ph ...
- 【游记】NOIP 2017
时间:2017.11.11~2017.11.12 地点:广东省广州市第六中学 Day1 T1:看到题目,心想这种题目也能放在T1? 这个结论我之前遇到过至少3次,自己也简单证明过.初见是NOIP200 ...
- 【CodeForces】788E New task
[题意]n个数,每个数有附加属性0或1,初始全为1.m个操作,每个操作可以改变一个数字的属性为0或1.对于每次操作后的序列求有多少子序列满足要求:5个数字,中间3个数相等且属性为1,左右两个数小于等于 ...
- 阅读关于DuReader:百度大规模的中文机器阅读理解数据集
很久之前就得到了百度机器阅读理解关于数据集的这篇文章,今天才进行总结!.... 论文地址:https://arxiv.org/abs/1711.05073 自然语言处理是人工智能皇冠上的明珠,而机器阅 ...
- Python【模块】importlib,requests
内容概要: 模仿django中间件的加载方式 importlib模块 requests模块 rsplit() 用实际使用的理解来解释两个模块 importlib模块 ...
- 算法题之找出数组里第K大的数
问题:找出一个数组里面前K个最大数. 解法一(直接解法): 对数组用快速排序,然后直接挑出第k大的数.这种方法的时间复杂度是O(Nlog(N)).N为原数组长度. 这个解法含有很多冗余,因为把整个数组 ...