King

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1564    Accepted Submission(s): 727

Problem Description
Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen prayed: ``If my child was a son and if only he was a sound king.'' After nine months her child was born, and indeed, she gave birth to a nice son. 
Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.

The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.

After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.

Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.

After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.

 
Input
The input consists of blocks of lines. Each block except the last corresponds to one set of problems and king's decisions about them. In the first line of the block there are integers n, and m where 0 < n <= 100 is length of the sequence S and 0 < m <= 100 is the number of subsequences Si. Next m lines contain particular decisions coded in the form of quadruples si, ni, oi, ki, where oi represents operator > (coded as gt) or operator < (coded as lt) respectively. The symbols si, ni and ki have the meaning described above. The last block consists of just one line containing 0.
 
Output
The output contains the lines corresponding to the blocks in the input. A line contains text successful conspiracy when such a sequence does not exist. Otherwise it contains text lamentable kingdom. There is no line in the output corresponding to the last ``null'' block of the input.
 
Sample Input
4 2
1 2 gt 0
2 2 lt 2
1 2
1 0 gt 0
1 0 lt 0
0
 
Sample Output
lamentable kingdom
successful conspiracy
 
Source
题意:
题意好迷。长度为n的序列,m个条件,输入条件

si,ni,gt/lt,ki表示a[si]+a[si+1]+......+a[si+ni]>/<Ki;问满足这m个条件的序列存在否。
代码:
//运行spfa判断是否存在负环。注意题目中是b-a>c,b-a<c,差分约束要求>=或<=,因此要转化成b-a>=c+1,b-a<=c-1;
//可以都转换成>=的形式求最长路或<=的形式求最短路。加一个公共源点,每个点到他的距离为0。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=,inf=0x7fffffff;
struct node
{
int to,next,val;
} edge[maxn*];//!
int mark[maxn],head[maxn],tot,dis[maxn],n,m,cnt[maxn];
void add(int a,int b,int c)
{
edge[tot].to=b;
edge[tot].next=head[a];
edge[tot].val=c;
head[a]=tot++;
}
bool spfa(int s)
{
for(int i=;i<=n+;i++)
dis[i]=-inf;
memset(mark,,sizeof(mark));
memset(cnt,,sizeof(cnt));
queue<int>q;
dis[s]=;
mark[s]=;
cnt[s]++;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
mark[u]=;
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].to;
if(dis[v]<dis[u]+edge[i].val)
{
dis[v]=dis[u]+edge[i].val;
if(!mark[v])
{
cnt[v]++;
if(cnt[v]>n+) return false;//加上公共源点有n+2个点,入队n+2次时存在负环。
q.push(v);
mark[v]=;
}
}
}
}
return true;
}
int main()
{
while(scanf("%d",&n)&&n){
scanf("%d",&m);
char ch[];
int a,b,c;
memset(head,-,sizeof(head));
tot=;
for(int i=;i<m;i++){
scanf("%d%d%s%d",&a,&b,ch,&c);
if(ch[]=='g') add(a-,b+a,c+);
else add(b+a,a-,-c);
}
for(int i=;i<=n;i++) add(n+,i,);
if(spfa(n+)) printf("lamentable kingdom\n");
else printf("successful conspiracy\n");
}
return ;
}
 

HDU1531 差分约束的更多相关文章

  1. Candies-POJ3159差分约束

    Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...

  2. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  3. ZOJ 2770火烧连营——差分约束

    偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...

  4. POJ 2983 Is the Information Reliable? 差分约束

    裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...

  5. 2014 Super Training #6 B Launching the Spacecraft --差分约束

    原题:ZOJ 3668 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3668 典型差分约束题. 将sum[0] ~ sum ...

  6. POJ 1364 King --差分约束第一题

    题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...

  7. [USACO2005][POJ3169]Layout(差分约束)

    题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...

  8. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  9. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

随机推荐

  1. 【zabbix 监控】第一章 zabbix的安装配置

    安装前准备 一.下载网络yum源: http://mirrors.163.com/.help/centos.html https://opsx.alibaba.com/mirror 1.首先备份/et ...

  2. beego 笔记

    1.开发文档 https://beego.me/docs/intro/ 2.bee run projectname demo controller package autoscaler import ...

  3. 孵化器使用Office365的场景及收益

  4. 【MFC】学习与问题整合

    需要源码联系邮件:kangxlchn@163.com 1.新建一个MFC工程(基于对话框) 环境:vs2017 统统NEXT 新建完成后打开MFCPrj.cpp文件 打开类试图 每创建一个MFC项目, ...

  5. opencv-学习笔记(3)

    opencv-学习笔记(3) 这章讲了 图像加法 opencv测试效率 IPYTHON测试效率 图像加法 cv2.add() 要求,两图片必须大小类型相同 然后是图像混合cv2.addWeighted ...

  6. Python—集合(在我的世界,你就是唯一)

    一.概念与定义 集合类型与数学中集合的概念一致,即包含0个或多个数据项的无序组合. 元素不可重复,只能是固定数据类型元素. 集合(set)属于Python无序可变序列,使用一对大括号作为定界符,元素之 ...

  7. 20145214实验五 Java网络编程及安全

    20145214实验五 Java网络编程及安全 实验内容 1.掌握Socket程序的编写: 2.掌握密码技术的使用: 3.设计安全传输系统. 实验步骤 我的结对伙伴是 20145219 宋歌,我负责的 ...

  8. Thrift IDL使用方式

    I.背景 众所周知,Thrift是一个RPC的框架,其可用于不同语言之间的服务相互调用.比如最近接触到的一个运用环境: *前端使用Node.Js重构了部分我们的老旧代码(前后端未分离的SpringBo ...

  9. UML建模语言入门 -- 静态图详解 类图 对象图 包图 静态图建模实战

    发现个好东西思维导图, 最近开始用MindManager整理博客 . 作者 :万境绝尘  转载请注明出处 : http://blog.csdn.net/shulianghan/article/deta ...

  10. python学习笔记06:操作文件

    调用内置的open函数打开文件,传递两个参数:文件路径(绝对路径或相对路径),打开模式('r':读,'r+':读写,'w':写,'b':二进制): f = open('data.txt','w') f ...