【组合计数】UVA - 11538 - Chess Queen
考虑把皇后放在同一横排或者统一纵列,答案为nm(m-1)和nm(n-1),显然。
考虑同一对角线的情况不妨设,n<=m,对角线从左到右依次为1,2,3,...,n-1,n,n,n,...,n(m-n+1个n),n-1,n-2,...,2,1
还有另一个方向的对角线,所以算出来之后要乘二。
即答案为2(2*Σ(i to n-1) (i(i-1)) + (m-n+1)n(n-1))
Σ(i to n-1) (i(i-1))怎么算呢?
可以拆成Σi² - Σi , i²的前缀和公式我就不推了。
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,m;
int main(){
while(1){
cin>>n>>m;
if(n==0 && m==0){
break;
}
if(n>m){
swap(n,m);
}
cout<<2ll*n*(n-1ll)*(3*m-n-1ll)/3ll+n*m*(m-1ll)+n*m*(n-1ll)<<endl;
}
return 0;
}
【组合计数】UVA - 11538 - Chess Queen的更多相关文章
- Uva 11538 - Chess Queen
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- 组合数学 UVa 11538 Chess Queen
Problem A Chess Queen Input: Standard Input Output: Standard Output You probably know how the game o ...
- UVa 11538 Chess Queen (排列组合计数)
题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...
- uva 11538 Chess Queen<计数>
链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...
- 【基本计数方法---加法原理和乘法原理】UVa 11538 - Chess Queen
题目链接 题意:给出m行n列的棋盘,当两皇后在同行同列或同对角线上时可以互相攻击,问共有多少种攻击方式. 分析:首先可以利用加法原理分情况讨论:①两皇后在同一行:②两皇后在同一列:③两皇后在同一对角线 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
随机推荐
- css控制文字换行
1.word-wrap 设置为break-word时,文本中的长单词或url可以换行 <p style="width:100px;word-wrap:break-word;border ...
- GCC在C语言中内嵌汇编 asm __volatile__ 【转】
转自:http://blog.csdn.net/pbymw8iwm/article/details/8227839 在内嵌汇编中,可以将C语言表达式指定为汇编指令的操作数,而且不用去管如何将C语言表达 ...
- Bit banging
Bit banging Bit banging is a technique for serial communications using software instead of dedicated ...
- java===java基础学习(9)---方法参数
方法参数注意三要点: 一个方法不能修改一个基本数据类型的参数(数值型或者布尔型). 一个方法可以改变一个对象参数的状态. 一个方法不能让对象参数引用一个新的对象. package testbotoo; ...
- C高级 跨平台协程库
1.0 协程库引言 协程对于上层语言还是比较常见的. 例如C# 中 yield retrun, lua 中 coroutine.yield 等来构建同步并发的程序. 本文就是探讨如何从底层实现开发级别 ...
- HTML5API(2)
四.文件API 1.概述 H5允许JS有条件的读取客户端文件 允许读取的文件:1.待上传的文件2.拖进浏览器的文件 多文件上传设置属性multiple 过滤上传文件类型 设置accept属性 acce ...
- Tomcat debug模式下特别慢但是run正常处理方法
转载自:http://blog.csdn.net/builderwfy/article/details/50785749 到网上查资料发现这是由eclipse和tomcat交互时,在debug模式启动 ...
- HDU 3669 Cross the Wall(斜率DP+预处理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3669 题目大意:有n(n<=50000)个矩形,每个矩形都有高和宽,你可以在墙上最多挖k个洞使得 ...
- POJ 1456 Supermarket(贪心+并查集)
题目链接:http://poj.org/problem?id=1456 题目大意:有n件商品,每件商品都有它的价值和截止售卖日期(超过这个日期就不能再卖了).卖一件商品消耗一个单位时间,售卖顺序是可以 ...
- UVALive 5099
B - Nubulsa Expo Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit S ...