考虑把皇后放在同一横排或者统一纵列,答案为nm(m-1)和nm(n-1),显然。

考虑同一对角线的情况不妨设,n<=m,对角线从左到右依次为1,2,3,...,n-1,n,n,n,...,n(m-n+1个n),n-1,n-2,...,2,1

还有另一个方向的对角线,所以算出来之后要乘二。

即答案为2(2*Σ(i to n-1) (i(i-1))    +   (m-n+1)n(n-1))

Σ(i to n-1) (i(i-1))怎么算呢?

可以拆成Σi² - Σi , i²的前缀和公式我就不推了。

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,m;
int main(){
while(1){
cin>>n>>m;
if(n==0 && m==0){
break;
}
if(n>m){
swap(n,m);
}
cout<<2ll*n*(n-1ll)*(3*m-n-1ll)/3ll+n*m*(m-1ll)+n*m*(n-1ll)<<endl;
}
return 0;
}

【组合计数】UVA - 11538 - Chess Queen的更多相关文章

  1. Uva 11538 - Chess Queen

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. 组合数学 UVa 11538 Chess Queen

    Problem A Chess Queen Input: Standard Input Output: Standard Output You probably know how the game o ...

  3. UVa 11538 Chess Queen (排列组合计数)

    题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...

  4. uva 11538 Chess Queen<计数>

    链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&am ...

  5. 【基本计数方法---加法原理和乘法原理】UVa 11538 - Chess Queen

    题目链接 题意:给出m行n列的棋盘,当两皇后在同行同列或同对角线上时可以互相攻击,问共有多少种攻击方式. 分析:首先可以利用加法原理分情况讨论:①两皇后在同一行:②两皇后在同一列:③两皇后在同一对角线 ...

  6. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  9. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

随机推荐

  1. hdu 2059 龟兔赛跑(动态规划DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2059 龟兔赛跑 Time Limit: 1000/1000 MS (Java/Others)    M ...

  2. JSX语法规范

    1.只有一个开始节点和一个尾节点 正确的写法 ReactDOM.render( <div>hello,你好</div>, document.body ) 错误的写法,开始节点和 ...

  3. 【遍历集合】Java遍历List,Map,Vector,Set的几种方法

    关于list,map,set的区别参考http://www.cnblogs.com/qlqwjy/p/7406573.html 1.遍历list @Test public void testList( ...

  4. Python3安装Celery模块后执行Celery命令报错

    1 Python3安装Celery模块后执行Celery命令报错 pip3 install celery # 安装正常,但是执行celery 命令的时候提示没有_ssl模块什么的 手动在Python解 ...

  5. Linux内核的架构

    GNU/Linux操作系统架构 备注:IPC进程间通.IPC(Inter-Process Communication)是共享"命名管道"的资源,它是为了让进程间通信而开放的命名管道 ...

  6. [device tree] interrupt mapping example

    This is for Devicetree Specification Release 0.1 Interrupt Mapping Example p19 在講解前,先帶進一些 PCI 的基礎觀念 ...

  7. (十七)vmware无法将网络更改为桥接状态

    故障现象,导致虚拟机无法正常上网 设备管理器中的驱动设备正常加载,但是注意这两个虚拟网卡是有问题的 将这两个虚拟网卡删除 只剩物理网卡了,重新启动电脑 将虚拟机里的网络设置删除 清空网卡后点击恢复默认 ...

  8. 64_c2

    coin-or-Bcp-1.4.3-3.fc26.i686.rpm 22-May-2017 21:07 250866 coin-or-Bcp-1.4.3-3.fc26.x86_64.rpm 22-Ma ...

  9. ue4.3正式版源码链接

    ue4.3正式版源码链接 http://tieba.baidu.com/p/3170253742

  10. [New Learn]被嫌弃的app的一生

    1.简介 为什么叫被嫌弃的app的一生?致敬电影<被嫌弃的松子的一生>. 自学IOS东一锄西一镐的总感觉没有一个总的概念,还是多看看官网吧,先看一下一个app的整个生命周期,本文主要是翻译 ...