最新内容会更新在主站深入浅出区块链社区

原文链接:用Python从零开始创建区块链

本文主要内容翻译自Learn Blockchains by Building One

本文原始链接,转载请注明出处。

作者认为最快的学习区块链的方式是自己创建一个,本文就跟随作者用Python来创建一个区块链。

对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。

但是完全搞懂区块链并非易事,我喜欢在实践中学习,通过写代码来学习技术会掌握得更牢固。通过构建一个区块链可以加深对区块链的理解。

准备工作

本文要求读者对Python有基本的理解,能读写基本的Python,并且需要对HTTP请求有基本的了解。

我们知道区块链是由区块的记录构成的不可变、有序的链结构,记录可以是交易、文件或任何你想要的数据,重要的是它们是通过哈希值(hashes)链接起来的。

如果你还不是很了解哈希,可以查看这篇文章

环境准备

环境准备,确保已经安装Python3.6+, pip , Flask, requests

安装方法:

pip install Flask==0.12.2 requests==2.18.4

同时还需要一个HTTP客户端,比如Postman,cURL或其它客户端。

参考源代码(原代码在我翻译的时候,无法运行,我fork了一份,修复了其中的错误,并添加了翻译,感谢star)

开始创建Blockchain

新建一个文件 blockchain.py,本文所有的代码都写在这一个文件中,可以随时参考源代码

Blockchain类

首先创建一个Blockchain类,在构造函数中创建了两个列表,一个用于储存区块链,一个用于储存交易。

以下是Blockchain类的框架:

class Blockchain(object):
def __init__(self):
self.chain = []
self.current_transactions = [] def new_block(self):
# Creates a new Block and adds it to the chain
pass def new_transaction(self):
# Adds a new transaction to the list of transactions
pass @staticmethod
def hash(block):
# Hashes a Block
pass @property
def last_block(self):
# Returns the last Block in the chain
pass

Blockchain类用来管理链条,它能存储交易,加入新块等,下面我们来进一步完善这些方法。

块结构

每个区块包含属性:索引(index),Unix时间戳(timestamp),交易列表(transactions),工作量证明(稍后解释)以及前一个区块的Hash值。

以下是一个区块的结构:

block = {
'index': 1,
'timestamp': 1506057125.900785,
'transactions': [
{
'sender': "8527147fe1f5426f9dd545de4b27ee00",
'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f",
'amount': 5,
}
],
'proof': 324984774000,
'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"
}

到这里,区块链的概念就清楚了,每个新的区块都包含上一个区块的Hash,这是关键的一点,它保障了区块链不可变性。如果攻击者破坏了前面的某个区块,那么后面所有区块的Hash都会变得不正确。不理解的话,慢慢消化,可参考{% post_link whatbc 区块链技术原理 %}

加入交易

接下来我们需要添加一个交易,来完善下new_transaction方法

class Blockchain(object):
... def new_transaction(self, sender, recipient, amount):
"""
生成新交易信息,信息将加入到下一个待挖的区块中
:param sender: <str> Address of the Sender
:param recipient: <str> Address of the Recipient
:param amount: <int> Amount
:return: <int> The index of the Block that will hold this transaction
""" self.current_transactions.append({
'sender': sender,
'recipient': recipient,
'amount': amount,
}) return self.last_block['index'] + 1

方法向列表中添加一个交易记录,并返回该记录将被添加到的区块(下一个待挖掘的区块)的索引,等下在用户提交交易时会有用。

创建新块

当Blockchain实例化后,我们需要构造一个创世块(没有前区块的第一个区块),并且给它加上一个工作量证明。

每个区块都需要经过工作量证明,俗称挖矿,稍后会继续讲解。

为了构造创世块,我们还需要完善new_block(), new_transaction() 和hash() 方法:

import hashlib
import json
from time import time class Blockchain(object):
def __init__(self):
self.current_transactions = []
self.chain = [] # Create the genesis block
self.new_block(previous_hash=1, proof=100) def new_block(self, proof, previous_hash=None):
"""
生成新块
:param proof: <int> The proof given by the Proof of Work algorithm
:param previous_hash: (Optional) <str> Hash of previous Block
:return: <dict> New Block
""" block = {
'index': len(self.chain) + 1,
'timestamp': time(),
'transactions': self.current_transactions,
'proof': proof,
'previous_hash': previous_hash or self.hash(self.chain[-1]),
} # Reset the current list of transactions
self.current_transactions = [] self.chain.append(block)
return block def new_transaction(self, sender, recipient, amount):
"""
生成新交易信息,信息将加入到下一个待挖的区块中
:param sender: <str> Address of the Sender
:param recipient: <str> Address of the Recipient
:param amount: <int> Amount
:return: <int> The index of the Block that will hold this transaction
"""
self.current_transactions.append({
'sender': sender,
'recipient': recipient,
'amount': amount,
}) return self.last_block['index'] + 1 @property
def last_block(self):
return self.chain[-1] @staticmethod
def hash(block):
"""
生成块的 SHA-256 hash值
:param block: <dict> Block
:return: <str>
""" # We must make sure that the Dictionary is Ordered, or we'll have inconsistent hashes
block_string = json.dumps(block, sort_keys=True).encode()
return hashlib.sha256(block_string).hexdigest()

通过上面的代码和注释可以对区块链有直观的了解,接下来我们看看区块是怎么挖出来的。

理解工作量证明

新的区块依赖工作量证明算法(PoW)来构造。PoW的目标是找出一个符合特定条件的数字,这个数字很难计算出来,但容易验证。这就是工作量证明的核心思想。

为了方便理解,举个例子:

假设一个整数 x 乘以另一个整数 y 的积的 Hash 值必须以 0 结尾,即 hash(x * y) = ac23dc...0。设变量 x = 5,求 y 的值?

用Python实现如下:

from hashlib import sha256
x = 5
y = 0 # y未知
while sha256(f'{x*y}'.encode()).hexdigest()[-1] != "0":
y += 1
print(f'The solution is y = {y}')

结果是y=21. 因为:

hash(5 * 21) = 1253e9373e...5e3600155e860

在比特币中,使用称为Hashcash的工作量证明算法,它和上面的问题很类似。矿工们为了争夺创建区块的权利而争相计算结果。通常,计算难度与目标字符串需要满足的特定字符的数量成正比,矿工算出结果后,会获得比特币奖励。

当然,在网络上非常容易验证这个结果。

实现工作量证明

让我们来实现一个相似PoW算法,规则是:寻找一个数 p,使得它与前一个区块的 proof 拼接成的字符串的 Hash 值以 4 个零开头。

import hashlib
import json from time import time
from uuid import uuid4 class Blockchain(object):
... def proof_of_work(self, last_proof):
"""
简单的工作量证明:
- 查找一个 p' 使得 hash(pp') 以4个0开头
- p 是上一个块的证明, p' 是当前的证明
:param last_proof: <int>
:return: <int>
""" proof = 0
while self.valid_proof(last_proof, proof) is False:
proof += 1 return proof @staticmethod
def valid_proof(last_proof, proof):
"""
验证证明: 是否hash(last_proof, proof)以4个0开头?
:param last_proof: <int> Previous Proof
:param proof: <int> Current Proof
:return: <bool> True if correct, False if not.
""" guess = f'{last_proof}{proof}'.encode()
guess_hash = hashlib.sha256(guess).hexdigest()
return guess_hash[:4] == "0000"

衡量算法复杂度的办法是修改零开头的个数。使用4个来用于演示,你会发现多一个零都会大大增加计算出结果所需的时间。

现在Blockchain类基本已经完成了,接下来使用HTTP requests来进行交互。

Blockchain作为API接口

我们将使用Python Flask框架,这是一个轻量Web应用框架,它方便将网络请求映射到 Python函数,现在我们来让Blockchain运行在基于Flask web上。

我们将创建三个接口:

  • /transactions/new 创建一个交易并添加到区块
  • /mine 告诉服务器去挖掘新的区块
  • /chain 返回整个区块链

创建节点

我们的“Flask服务器”将扮演区块链网络中的一个节点。我们先添加一些框架代码:

import hashlib
import json
from textwrap import dedent
from time import time
from uuid import uuid4 from flask import Flask class Blockchain(object):
... # Instantiate our Node
app = Flask(__name__) # Generate a globally unique address for this node
node_identifier = str(uuid4()).replace('-', '') # Instantiate the Blockchain
blockchain = Blockchain() @app.route('/mine', methods=['GET'])
def mine():
return "We'll mine a new Block" @app.route('/transactions/new', methods=['POST'])
def new_transaction():
return "We'll add a new transaction" @app.route('/chain', methods=['GET'])
def full_chain():
response = {
'chain': blockchain.chain,
'length': len(blockchain.chain),
}
return jsonify(response), 200 if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)

简单的说明一下以上代码:

第15行: 创建一个节点.

第18行: 为节点创建一个随机的名字.

第21行: 实例Blockchain类.

第24–26行: 创建/mine GET接口。

第28–30行: 创建/transactions/new POST接口,可以给接口发送交易数据.

第32–38行: 创建 /chain 接口, 返回整个区块链。

第40–41行: 服务运行在端口5000上.

发送交易

发送到节点的交易数据结构如下:

{
"sender": "my address",
"recipient": "someone else's address",
"amount": 5
}

之前已经有添加交易的方法,基于接口来添加交易就很简单了

import hashlib
import json
from textwrap import dedent
from time import time
from uuid import uuid4 from flask import Flask, jsonify, request ... @app.route('/transactions/new', methods=['POST'])
def new_transaction():
values = request.get_json() # Check that the required fields are in the POST'ed data
required = ['sender', 'recipient', 'amount']
if not all(k in values for k in required):
return 'Missing values', 400 # Create a new Transaction
index = blockchain.new_transaction(values['sender'], values['recipient'], values['amount']) response = {'message': f'Transaction will be added to Block {index}'}
return jsonify(response), 201

挖矿

挖矿正是神奇所在,它很简单,做了一下三件事:

  1. 计算工作量证明PoW
  2. 通过新增一个交易授予矿工(自己)一个币
  3. 构造新区块并将其添加到链中
import hashlib
import json from time import time
from uuid import uuid4 from flask import Flask, jsonify, request ... @app.route('/mine', methods=['GET'])
def mine():
# We run the proof of work algorithm to get the next proof...
last_block = blockchain.last_block
last_proof = last_block['proof']
proof = blockchain.proof_of_work(last_proof) # 给工作量证明的节点提供奖励.
# 发送者为 "0" 表明是新挖出的币
blockchain.new_transaction(
sender="0",
recipient=node_identifier,
amount=1,
) # Forge the new Block by adding it to the chain
block = blockchain.new_block(proof) response = {
'message': "New Block Forged",
'index': block['index'],
'transactions': block['transactions'],
'proof': block['proof'],
'previous_hash': block['previous_hash'],
}
return jsonify(response), 200

注意交易的接收者是我们自己的服务器节点,我们做的大部分工作都只是围绕Blockchain类方法进行交互。到此,我们的区块链就算完成了,我们来实际运行下

运行区块链

你可以使用cURL 或Postman 去和API进行交互

启动server:

$ python blockchain.py
* Runing on http://127.0.0.1:5000/ (Press CTRL+C to quit)

让我们通过请求 http://localhost:5000/mine 来进行挖矿

通过post请求,添加一个新交易

如果不是使用Postman,则用一下的cURL语句也是一样的:

$ curl -X POST -H "Content-Type: application/json" -d '{
"sender": "d4ee26eee15148ee92c6cd394edd974e",
"recipient": "someone-other-address",
"amount": 5
}' "http://localhost:5000/transactions/new"

在挖了两次矿之后,就有3个块了,通过请求 http://localhost:5000/chain 可以得到所有的块信息。

{
"chain": [
{
"index": 1,
"previous_hash": 1,
"proof": 100,
"timestamp": 1506280650.770839,
"transactions": []
},
{
"index": 2,
"previous_hash": "c099bc...bfb7",
"proof": 35293,
"timestamp": 1506280664.717925,
"transactions": [
{
"amount": 1,
"recipient": "8bbcb347e0634905b0cac7955bae152b",
"sender": "0"
}
]
},
{
"index": 3,
"previous_hash": "eff91a...10f2",
"proof": 35089,
"timestamp": 1506280666.1086972,
"transactions": [
{
"amount": 1,
"recipient": "8bbcb347e0634905b0cac7955bae152b",
"sender": "0"
}
]
}
],
"length": 3
}

一致性(共识)

我们已经有了一个基本的区块链可以接受交易和挖矿。但是区块链系统应该是分布式的。既然是分布式的,那么我们究竟拿什么保证所有节点有同样的链呢?这就是一致性问题,我们要想在网络上有多个节点,就必须实现一个一致性的算法。

注册节点

在实现一致性算法之前,我们需要找到一种方式让一个节点知道它相邻的节点。每个节点都需要保存一份包含网络中其它节点的记录。因此让我们新增几个接口:

  1. /nodes/register 接收URL形式的新节点列表
  2. /nodes/resolve 执行一致性算法,解决任何冲突,确保节点拥有正确的链

我们修改下Blockchain的init函数并提供一个注册节点方法:

...
from urllib.parse import urlparse
... class Blockchain(object):
def __init__(self):
...
self.nodes = set()
... def register_node(self, address):
"""
Add a new node to the list of nodes
:param address: <str> Address of node. Eg. 'http://192.168.0.5:5000'
:return: None
""" parsed_url = urlparse(address)
self.nodes.add(parsed_url.netloc)

我们用 set 来储存节点,这是一种避免重复添加节点的简单方法。

实现共识算法

前面提到,冲突是指不同的节点拥有不同的链,为了解决这个问题,规定最长的、有效的链才是最终的链,换句话说,网络中有效最长链才是实际的链。

我们使用一下的算法,来达到网络中的共识

...
import requests class Blockchain(object)
... def valid_chain(self, chain):
"""
Determine if a given blockchain is valid
:param chain: <list> A blockchain
:return: <bool> True if valid, False if not
""" last_block = chain[0]
current_index = 1 while current_index < len(chain):
block = chain[current_index]
print(f'{last_block}')
print(f'{block}')
print("\n-----------\n")
# Check that the hash of the block is correct
if block['previous_hash'] != self.hash(last_block):
return False # Check that the Proof of Work is correct
if not self.valid_proof(last_block['proof'], block['proof']):
return False last_block = block
current_index += 1 return True def resolve_conflicts(self):
"""
共识算法解决冲突
使用网络中最长的链.
:return: <bool> True 如果链被取代, 否则为False
""" neighbours = self.nodes
new_chain = None # We're only looking for chains longer than ours
max_length = len(self.chain) # Grab and verify the chains from all the nodes in our network
for node in neighbours:
response = requests.get(f'http://{node}/chain') if response.status_code == 200:
length = response.json()['length']
chain = response.json()['chain'] # Check if the length is longer and the chain is valid
if length > max_length and self.valid_chain(chain):
max_length = length
new_chain = chain # Replace our chain if we discovered a new, valid chain longer than ours
if new_chain:
self.chain = new_chain
return True return False

第一个方法 valid_chain() 用来检查是否是有效链,遍历每个块验证hash和proof.

第2个方法 resolve_conflicts() 用来解决冲突,遍历所有的邻居节点,并用上一个方法检查链的有效性, 如果发现有效更长链,就替换掉自己的链

让我们添加两个路由,一个用来注册节点,一个用来解决冲突。

@app.route('/nodes/register', methods=['POST'])
def register_nodes():
values = request.get_json() nodes = values.get('nodes')
if nodes is None:
return "Error: Please supply a valid list of nodes", 400 for node in nodes:
blockchain.register_node(node) response = {
'message': 'New nodes have been added',
'total_nodes': list(blockchain.nodes),
}
return jsonify(response), 201 @app.route('/nodes/resolve', methods=['GET'])
def consensus():
replaced = blockchain.resolve_conflicts() if replaced:
response = {
'message': 'Our chain was replaced',
'new_chain': blockchain.chain
}
else:
response = {
'message': 'Our chain is authoritative',
'chain': blockchain.chain
} return jsonify(response), 200

你可以在不同的机器运行节点,或在一台机机开启不同的网络端口来模拟多节点的网络,这里在同一台机器开启不同的端口演示,在不同的终端运行一下命令,就启动了两个节点:http://localhost:5000http://localhost:5001

pipenv run python blockchain.py
pipenv run python blockchain.py -p 5001

然后在节点2上挖两个块,确保是更长的链,然后在节点1上访问接口/nodes/resolve ,这时节点1的链会通过共识算法被节点2的链取代。

好啦,你可以邀请朋友们一起来测试你的区块链

用Python从零开始创建区块链的更多相关文章

  1. 用spring boot 2从零开始创建区块链

    区块链这么火的技术,大java怎能落后,所以有了本文,主要代码参考自 Learn Blockchains by Building One , 中文翻译:用Python从零开始创建区块链 . 一.区块链 ...

  2. 用 Python 撸一个区块链

    本文翻译自 Daniel van Flymen 的文章 Learn Blockchains by Building One 略有删改.原文地址:https://hackernoon.com/learn ...

  3. Python 模拟简单区块链

    首先这是说明一下这是Tiny熊老师的教程https://www.cnblogs.com/tinyxiong 另外还要说明一下,暑假指导老师让我们做一些关于区块链的应用.这里只是涉及极其简单的模拟,主要 ...

  4. 如何从零开始学习区块链技术——推荐从以太坊开发DApp开始

    很多人迷惑于区块链和以太坊,不知如何学习,本文简单说了一下学习的一些方法和资源. 一. 以太坊和区块链的关系 从区块链历史上来说,先诞生了比特币,当时并没有区块链这个技术和名词,然后业界从比特币中提取 ...

  5. Python实现一条基于POS算法的区块链

    区块链中的共识算法 在比特币公链架构解析中,就曾提到过为了实现去中介化的设计,比特币设计了一套共识协议,并通过此协议来保证系统的稳定性和防攻击性. 并且我们知道,截止目前使用最广泛,也是最被大家接受的 ...

  6. 40多行python代码开发一个区块链。

    40多行python代码开发一个区块链?可信吗?我们将通过Python 2动手开发实现一个迷你区块链来帮你真正理解区块链技术的核心原理.python开发区块链的源代码保存在Github. 尽管有人认为 ...

  7. 用不到 50 行的 Python 代码构建最小的区块链

    引用 译者注:随着比特币的不断发展,它的底层技术区块链也逐步走进公众视野,引起大众注意.本文用不到50行的Python代码构建最小的数据区块链,简单介绍了区块链去中心化的结构与其实现原理. 尽管一些人 ...

  8. 区块链入门到实战(28)之Solidity – 介绍

    Solidity语言是一种面向合约的高级编程语言,用于在以太坊区块链网络上实现智能合约.Solidity语言深受c++.Python和JavaScript的影响,针对以太坊(Ethereum)虚拟机( ...

  9. java开发区块链只需150行代码

    本文目的是通过java实战开发教程理解区块链是什么.将通过实战入门学习,用Java自学开发一个很基本的区块链,并在此基础上能扩展如web框架应用等.这个基本的java区块链也实现简单的工作量证明系统. ...

随机推荐

  1. vim下处理文档中的\r\n\t字符

    问题复现 拿到的文档中包含了大量的\r.\n.\t等字符,形如: \r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\ ...

  2. node 当中的 cnpm和npm 的区别和使用

    在安装nodejs之后会有npm命令 打开命令符输入之后 输入node -v(记得-v前空格)查看版本信息   如果显示出来了就说明安装成功 然后 npm 可以安装node插件 cnpm使用的是淘宝网 ...

  3. oracle存储过程中is和as区别

    在存储过程(PROCEDURE)和函数(FUNCTION)中没有区别:在视图(VIEW)中只能用AS不能用IS:在游标(CURSOR)中只能用IS不能用AS.

  4. 洗礼灵魂,修炼python(7)--元组,集合,不可变集合

    前面已经把列表的基本用法讲解完 接着讲python的几大核心之--元组(tuple) 1.什么是元组? 类似列表,但为不可变对象,之前提到列表是可变对象,所谓可变对象就是支持原处修改,并且在修改前后对 ...

  5. hdu1512 Monkey King(左偏树 + 并查集)

    Once in a forest, there lived N aggressive monkeys. At the beginning, they each does things in its o ...

  6. 如何维护一个1000 IP的免费代理池

    楔子 好友李博士要买房了, 前几天应邀帮他抓链家的数据分析下房价, 爬到一半遇到了验证码. 李博士的想法是每天把链家在售的二手房数据都抓一遍, 然后按照时间序列分析. 链家线上在交易的二手房数据大概有 ...

  7. Python s12 Day3 笔记及作业

    1. Set集合 old_dict = { "#1":{ 'hostname':'c1', 'cpu_count':2, 'mem_capicity':16}, "#2& ...

  8. OpenCV探索之路(二十六):如何去除票据上的印章

    最近在做票据的识别的编码工作时遇到一些问题,就是票据上往往会有一些红色印章把一些重要信息区域给覆盖了,比如一些开发票人员盖印章时比较随意,容易吧一些关键区域给遮蔽了,这让接下来的票据识别很困难,因此, ...

  9. 屏蔽掉Google Chrome 浏览器 textarea 单词拼写检测

    可以使用html5的spellcheck属性来关闭对元素内容进行拼写检查. <!-以下两种书写方法正确--> <textarea spellcheck="true" ...

  10. php中如何给类规范的注释

    @access 使用范围:class,function,var,define,module 该标记用于指明关键字的存取权限:private.public或proteced @author 指明作者 @ ...