Fast data loading from files to R
Recently we were building a Shiny App in which we had to load data from a very large dataframe. It was directly impacting the app initialization time, so we had to look into different ways of reading data from files to R (in our case customer provided csv files) and identify the best one.
The goal of my post is to compare:
read.csv
fromutils
, which was the standard way of reading csvfiles to R in RStudio,read_csv
fromreadr
which replaced the former method as a standard way of doing it in RStudio,load
andreadRDS
frombase
, andread_feather
fromfeather
andfread
fromdata.table
.
Data
First let’s generate some random data
set.seed(123)
df <- data.frame(replicate(10, sample(0:2000, 15 * 10^5, rep = TRUE)),
replicate(10, stringi::stri_rand_strings(1000, 5)))
and save the files on a disk to evaluate the loading time. Besides thecsv
format we will also need feather
, RDS
and Rdata
files.
path_csv <- '../assets/data/fast_load/df.csv'
path_feather <- '../assets/data/fast_load/df.feather'
path_rdata <- '../assets/data/fast_load/df.RData'
path_rds <- '../assets/data/fast_load/df.rds'
library(feather)
library(data.table)
write.csv(df, file = path_csv, row.names = F)
write_feather(df, path_feather)
save(df, file = path_rdata)
saveRDS(df, path_rds)
Next let’s check our files sizes:
files <- c('../assets/data/fast_load/df.csv', '../assets/data/fast_load/df.feather', '../assets/data/fast_load/df.RData', '../assets/data/fast_load/df.rds')
info <- file.info(files)
info$size_mb <- info$size/(1024 * 1024)
print(subset(info, select=c("size_mb")))
## size_mb
## ../assets/data/fast_load/df.csv 1780.3005
## ../assets/data/fast_load/df.feather 1145.2881
## ../assets/data/fast_load/df.RData 285.4836
## ../assets/data/fast_load/df.rds 285.4837
As we can see both csv
and feather
format files are taking much more storage space. Csv
more than 6 times and feather
more than 4 times comparing to RDS
and RData
.
Benchmark
We will use microbenchmark
library to compare the reading times of the following methods:
- utils::read.csv
- readr::read_csv
- data.table::fread
- base::load
- base::readRDS
- feather::read_feather
in 10 rounds.
library(microbenchmark)
benchmark <- microbenchmark(readCSV = utils::read.csv(path_csv),
readrCSV = readr::read_csv(path_csv, progress = F),
fread = data.table::fread(path_csv, showProgress = F),
loadRdata = base::load(path_rdata),
readRds = base::readRDS(path_rds),
readFeather = feather::read_feather(path_feather), times = 10)
print(benchmark, signif = 2)
##Unit: seconds
## expr min lq mean median uq max neval
## readCSV 200.0 200.0 211.187125 210.0 220.0 240.0 10
## readrCSV 27.0 28.0 29.770890 29.0 32.0 33.0 10
## fread 15.0 16.0 17.250016 17.0 17.0 22.0 10
## loadRdata 4.4 4.7 5.018918 4.8 5.5 5.9 10
## readRds 4.6 4.7 5.053674 5.1 5.3 5.6 10
## readFeather 1.5 1.8 2.988021 3.4 3.6 4.1 10
And the winner is… feather
! However, using feather
requires prior conversion of the file to the feather format.
Using load
or readRDS
can improve performance (second and third place in terms of speed) and has a benefit of storing smaller/compressed file. In both cases you will have to convert your file to the proper format first.
When it comes to reading from csv
format fread
significantly beatsread_csv
and read.csv
, and thus is the best option to read a csv
file.
In our case we decided to go with feather
file since conversion fromcsv
to this format is just a one time job and we didn’t have a strict limitation on a storage space to consider usage of Rds
or RData
format.
The final workflow was:
- reading a
csv
file provided by our customer usingfread
, - writing it to
feather
usingwrite_feather
, and - loading a
feather
file on app initialization usingread_feather
.
First two tasks were done once and outside of a Shiny App context.
There is also quite interesting benchmark done by Hadley here on reading complete files to R. Unfortunately, if you use functions defined in that post, you will end up with an character type object, and you will have to apply string manipulations to obtain a commonly and widely used dataframe.
转自:http://blog.appsilondatascience.com/rstats/2017/04/11/fast-data-load.html
Fast data loading from files to R的更多相关文章
- pytorch例子学习-DATA LOADING AND PROCESSING TUTORIAL
参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUT ...
- Redisql: the lightning fast data polyglot【翻译】 - Linvo's blog - 博客频道 - CSDN.NET
Redisql: the lightning fast data polyglot[翻译] - Linvo's blog - 博客频道 - CSDN.NET Redisql: the lightnin ...
- 安装mysql时出现initialize specified but the data directory has files in in.Aborting.该如何解决
eclipse中写入sql插入语句时,navicat中显示的出现乱码(???). 在修改eclipse工作空间编码.navicate中的数据库编码.mysql中my.ini中的配置之后还是出现乱码. ...
- The multi-part request contained parameter data (excluding uploaded files) that exceeded the limit for maxPostSize set on the associated connector.
springboot 表单体积过大时报错: The multi-part request contained parameter data (excluding uploaded files) tha ...
- Springboot 上传报错: Failed to parse multipart servlet request; nested exception is java.lang.IllegalStateException: The multi-part request contained parameter data (excluding uploaded files) that exceede
Failed to parse multipart servlet request; nested exception is java.lang.IllegalStateException: The ...
- MYSQL常见安装错误集:[ERROR] --initialize specified but the data directory has files in it. Abort
1.[ERROR] --initialize specified but the data directory has files in it. Abort [错误] -初始化指定,但数据目录中有文件 ...
- Data Manipulation with dplyr in R
目录 select The filter and arrange verbs arrange filter Filtering and arranging Mutate The count verb ...
- 启动MySQL5.7时报错:initialize specified but the data directory has files in it. Aborting.
启动MySQL5.7时报错:initialize specified but the data directory has files in it. Aborting 解决方法: vim /etc/m ...
- STM32 GPIO fast data transfer with DMA
AN2548 -- 使用 STM32F101xx 和 STM32F103xx 的 DMA 控制器 DMA控制器 DMA是AMBA的先进高性能总线(AHB)上的设备,它有2个AHB端口: 一个是从端口, ...
随机推荐
- (读书笔记)函数参数浅析-JavaScript高级程序设计(第3版)
ECMAScript函数不介意传递的参数个数,因为在其内部是用一个数组进行表示的.在函数体内可以通过arguments对象来访问这个参数数组,就像我们正常访问数组一样处理. arguments对象只是 ...
- Webdriver API之操作(二)
一.窗口截图 dirver.get_screenshot_as_file("D:\\report\\image\\xxx.jpg") 二.关闭窗口 dirver.close() # ...
- 封装Web Uploader 上传插件、My97DatePicker、百度 编辑器 的使用 (ASP.NET MVC)
Web Uploader: WebUploader是由Baidu WebFE(FEX)团队开发的一个简单的以HTML5为主,FLASH为辅的现代文件上传组件.在现代的浏览器里面能充分发挥HTML5的优 ...
- node express安装
我们现在全局安装只需要安装这个命令行工具就可以,指令如下: npm install -g express-generator 这时我们就着手安装express框架,指令如下: express blog ...
- angular directive
1.restrict (字符串)可选参数,指明指令在DOM里面以什么形式被声明: 取值有:E(元素),A(属性),C(类),M(注释),其中默认值为A: E(元素):<directiveName ...
- ajax的介绍
$.ajax({ 11 url: "article.asmx/GetArticleByID", 12 type: "POST", 13 datatype: &q ...
- SQLite中使用CTE巧解多级分类的级联查询
在最近的项目中使用ActiveReports报表设计器设计一个报表模板时,遇到一个多级分类的难题:需要将某个部门所有销售及下属部门的销售金额汇总,因为下属级别的层次不确定,所以靠拼接子查询的方式显然是 ...
- 不须组件的NPOI插件 excel读取
前提: 需要DLL 1.引用 using NPOI.SS.UserModel; using NPOI.XSSF.UserModel;//用于2007版本 using NPOI.HSSF.UserMo ...
- Layout基本属性总结
在Android中,共有五种布局方式,分别是:FrameLayout(框架布局),LinearLayout (线性布局),GridLayout(网格布局),RelativeLayout(相对布局),T ...
- 再议Unity优化
0x00 前言 在很长一段时间里,Unity项目的开发者的优化指南上基本都会有一条关于使用GetCompnent方法获取组件的条目(例如14年我的这篇博客<深入浅出聊Unity3D项目优化:从D ...