Building Roads
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11861   Accepted: 3376

Description

Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already connect some of the farms.

Each of the N (1 ≤ N ≤ 1,000) farms (conveniently numbered 1..N) is represented by a position (XiYi) on the plane (0 ≤ X≤ 1,000,000; 0 ≤ Y≤ 1,000,000). Given the preexisting M roads (1 ≤ M ≤ 1,000) as pairs of connected farms, help Farmer John determine the smallest length of additional roads he must build to connect all his farms.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Two space-separated integers: Xand Y
* Lines N+2..N+M+2: Two space-separated integers: i and j, indicating that there is already a road connecting the farm i and farm j.

Output

* Line 1: Smallest length of additional roads required to connect all farms, printed without rounding to two decimal places. Be sure to calculate distances as 64-bit floating point numbers.

Sample Input

4 1
1 1
3 1
2 3
4 3
1 4

Sample Output

4.00

一个最小生成树问题,kruskal算法会TLE

没什么可说i的,这玩意得存模板,这题唯一的不一样只是改变了权值为两点间距。

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
int n,m;
struct node
{
double x,y;
}a[1005];
int vis[1005];
double d[1005][1005];
double dis(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double prim()
{
memset(vis,0,sizeof(vis));
double low[1005];
int pos=1;
double ans=0;
vis[1]=1;
for(int i=2;i<=n;i++){
low[i]=d[pos][i]; }
for(int i=1;i<n;i++){
double min=INF;
for(int j=1;j<=n;j++)
{
if(!vis[j]&&min>low[j]){
min=low[j];
pos=j;
}
}
vis[pos]=1;
ans+=min;
for(int i =1;i<=n;i++)
{
if(!vis[i]&&low[i]>d[pos][i]){
low[i]=d[pos][i];
}
}
}
return ans;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(d,INF,sizeof(d));
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
}
for(int i=1;i<=n;i++){
for(int j =i+1;j<=n;j++){
d[i][j]=d[j][i]=dis(a[i],a[j]);
}
}
for(int i=0;i<m;i++){
int x,y;
scanf("%d%d",&x,&y);
d[x][y]=0;
d[y][x]=0;
}
printf("%.2f\n",prim());
}
}

  

POJ 3625 最小生成树 Prim C++的更多相关文章

  1. 数据结构代码整理(线性表,栈,队列,串,二叉树,图的建立和遍历stl,最小生成树prim算法)。。持续更新中。。。

    //归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 100 ...

  2. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  3. 最小生成树Prim算法(邻接矩阵和邻接表)

    最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属 ...

  4. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

  5. 最小生成树Prim

    首先解释什么是最小生成树,最小生成树是指在一张图中找出一棵树,任意两点的距离已经是最短的了. 算法要点: 1.用book数组存放访问过的节点. 2.用dis数组保存对应下标的点到树的最近距离,这里要注 ...

  6. 最小生成树—prim算法

    最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[ ...

  7. 最小生成树Prim算法和Kruskal算法

    Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集 ...

  8. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  9. POJ.1287 Networking (Prim)

    POJ.1287 Networking (Prim) 题意分析 可能有重边,注意选择最小的边. 编号依旧从1开始. 直接跑prim即可. 代码总览 #include <cstdio> #i ...

随机推荐

  1. mint-ui —— navbar和tab-container的区别

    navbar的具体实现 <template> <div class="page-navbar"> <div class="page-titl ...

  2. nodejs 语法学习(持续更新)

    合并objects var o1 = { a: 1 }; var o2 = { b: 2 }; var o3 = { c: 3 }; var obj = Object.assign(o1, o2, o ...

  3. 零碎的JS基础

    一.js的三种弹窗: 警告框            弹出警告alert() 确认框            有确认内容的框confirm()有两个值,true和false 当用户按下确认键后,打印tru ...

  4. WeQuant交易策略—BOLL

    BOLL(布林线指标)策略 简介 BOLL(布林线)指标是技术分析的常用工具之一,由美国股市分析家约翰•布林根据统计学中的标准差原理设计出来的一种非常简单实用的技术分析指标.一般而言,价格的运动总是围 ...

  5. C#异步编程(async and await)及异步方法同步调用

    1.什么是异步? 异步操作通常用于执行完成时间可能较长的任务,如打开大文件.连接远程计算机或查询数据库=异步操作在主应用程序线程以外的线程中执行.应用程序调用方法异步执行某个操作时,应用程序可在异步方 ...

  6. Java中"==" 和 equals 的区别

    "=="比较的是地址值 equals 比较的是内容 看例子能够更加清晰的理解 eg: String s1="java",s2="java"; ...

  7. 介绍下Python的两个标准库 os 和 sys

    import sysprint(sys.path) #python 2 中报错 ....,打印的是绝对路径(***\\python\\lib\\site-packages# 第三方库,后退一级为标准库 ...

  8. C++中static关键字作用总结

    1.先来介绍它的第一条也是最重要的一条:隐藏.(static函数,static变量均可) 当同时编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性.举例来说明.同时编译两个源文件 ...

  9. 深入浅出数据结构C语言版(17)——有关排序算法的分析

    这一篇博文我们将讨论一些与排序算法有关的定理,这些定理将解释插入排序博文中提出的疑问(为什么冒泡排序与插入排序总是执行同样数量的交换操作,而选择排序不一定),同时为讲述高级排序算法做铺垫(高级排序为什 ...

  10. 实现NFS共享wordpress

    author:JevonWei 版权声明:原创作品 两台Web服务器,一台mysql服务器,一台NFS服务器,一台DNS服务器 拓扑结构 拓扑环境 web1 192.168.198.110 web2 ...