【转】漫谈linux文件IO--io流程讲的很清楚
这篇文章写的比较全面,也浅显易懂,备份下。转载自:http://blog.chinaunix.net/uid-27105712-id-3270102.html
在Linux 开发中,有几个关系到性能的东西,技术人员非常关注:进程,CPU,MEM,网络IO,磁盘IO。本篇文件打算详细全面,深入浅出。剖析文件IO的细节。从多个角度探索如何提高IO性能。本文尽量用通俗易懂的视角去阐述。不copy内核代码。
阐述之前,要先有个大视角,让我们站在万米高空,鸟瞰我们的文件IO,它们设计是分层的,分层有2个好处,一是架构清晰,二是解耦。让我们看一下下面这张图。

图一
1. 穿越各层写文件方式
程序的最终目的是要把数据写到磁盘上, 但是系统从通用性和性能角度,尽量提供一个折中的方案来保证这些。让我们来看一个最常用的写文件典型example,也是路径最长的IO。
- {
- char *buf = malloc(MAX_BUF_SIZE);
- strncpy(buf, src, , MAX_BUF_SIZE);
- fwrite(buf, MAX_BUF_SIZE, 1, fp);
- fclose(fp);
- }
这里malloc的buf对于图层中的application buffer,即应用程序的buffer;调用fwrite后,把数据从application buffer 拷贝到了 CLib buffer,即C库标准IObuffer。fwrite返回后,数据还在CLib buffer,如果这时候进程core掉。这些数据会丢失。没有写到磁盘介质上。当调用fclose的时候,fclose调用会把这些数据刷新到磁盘介质上。除了fclose方法外,还有一个主动刷新操作fflush函数,不过fflush函数只是把数据从CLib buffer 拷贝到page cache 中,并没有刷新到磁盘上,从page cache刷新到磁盘上可以通过调用fsync函数完成。
从上面类子看到,一个常用的fwrite函数过程,基本上历经千辛万苦,数据经过多次copy,才到达目的地。有人心生疑问,这样会提高性能吗,反而会降低性能吧。这个问题先放一放。
有人说,我不想通过fwrite+fflush这样组合,我想直接写到page cache。这就是我们常见的文件IO调用read/write函数。这些函数基本上是一个函数对应着一个系统调用,如sys_read/sys_write. 调用write函数,是直接通过系统调用把数据从应用层拷贝到内核层,从application buffer 拷贝到 page cache 中。
系统调用,write会触发用户态/内核态切换?是的。那有没有办法避免这些消耗。这时候该mmap出场了,mmap把page cache 地址空间映射到用户空间,应用程序像操作应用层内存一样,写文件。省去了系统调用开销。
那如果继续刨根问底,如果想绕过page cache,直接把数据送到磁盘设备上怎么办。通过open文件带上O_DIRECT参数,这是write该文件。就是直接写到设备上。
如果继续较劲,直接写扇区有没有办法。这就是所谓的RAW设备写,绕开了文件系统,直接写扇区,想fdsik,dd,cpio之类的工具就是这一类操作。
2. IO调用链
列举了上述各种穿透各种cache 层写操作,可以看到系统提供的接口相当丰富,满足你各种写要求。下面通过讲解图一,了解一下文件IO的调用链。
fwrite是系统提供的最上层接口,也是最常用的接口。它在用户进程空间开辟一个buffer,将多次小数据量相邻写操作先缓存起来,合并,最终调用write函数一次性写入(或者将大块数据分解多次write调用)。
Write函数通过调用系统调用接口,将数据从应用层copy到内核层,所以write会触发内核态/用户态切换。当数据到达page cache后,内核并不会立即把数据往下传递。而是返回用户空间。数据什么时候写入硬盘,有内核IO调度决定,所以write是一个异步调用。这一点和read不同,read调用是先检查page cache里面是否有数据,如果有,就取出来返回用户,如果没有,就同步传递下去并等待有数据,再返回用户,所以read是一个同步过程。当然你也可以把write的异步过程改成同步过程,就是在open文件的时候带上O_SYNC标记。
数据到了page cache后,内核有pdflush线程在不停的检测脏页,判断是否要写回到磁盘中。把需要写回的页提交到IO队列——即IO调度队列。又IO调度队列调度策略调度何时写回。
提到IO调度队列,不得不提一下磁盘结构。这里要讲一下,磁头和电梯一样,尽量走到头再回来,避免来回抢占是跑,磁盘也是单向旋转,不会反复逆时针顺时针转的。从网上copy一个图下来,具体这里就不介绍。

IO队列有2个主要任务。一是合并相邻扇区的,而是排序。合并相信很容易理解,排序就是尽量按照磁盘选择方向和磁头前进方向排序。因为磁头寻道时间是和昂贵的。
这里IO队列和我们常用的分析工具IOStat关系密切。IOStat中rrqm/s wrqm/s表示读写合并个数。avgqu-sz表示平均队列长度。
内核中有多种IO调度算法。当硬盘是SSD时候,没有什么磁道磁头,人家是随机读写的,加上这些调度算法反而画蛇添足。OK,刚好有个调度算法叫noop调度算法,就是什么都不错(合并是做了)。刚好可以用来配置SSD硬盘的系统。
从IO队列出来后,就到了驱动层(当然内核中有更多的细分层,这里忽略掉),驱动层通过DMA,将数据写入磁盘cache。
至于磁盘cache时候写入磁盘介质,那是磁盘控制器自己的事情。如果想要睡个安慰觉,确认要写到磁盘介质上。就调用fsync函数吧。可以确定写到磁盘上了。
3. 一致性和安全性
谈完调用细节,再将一下一致性问题和安全问题。既然数据没有到到磁盘介质前,可能处在不同的物理内存cache中,那么如果出现进程死机,内核死,掉电这样事件发生。数据会丢失吗。
当进程死机后:只有数据还处在application cache或CLib cache时候,数据会丢失。数据到了page cache。进程core掉,即使数据还没有到硬盘。数据也不会丢失。
当内核core掉后,只要数据没有到达disk cache,数据都会丢失。
掉电情况呢,哈哈,这时候神也救不了你,哭吧。
那么一致性呢,如果两个进程或线程同时写,会写乱吗?或A进程写,B进程读,会写脏吗?
文章写到这里,写得太长了,就举出各种各样的例子。讲一下大概判断原则吧。fwrite操作的buffer是在进程私有空间,两个线程读写,肯定需要锁保护的。如果进程,各有各的地址空间。是否要加锁,看应用场景。
write操作如果写大小小于PIPE_BUF(一般是4096),是原子操作,能保证两个进程“AAA”,“BBB”写操作,不会出现“ABAABB”这样的数据交错。O_APPEND标志能保证每次重新计算pos,写到文件尾的原子性。
数据到了内核层后,内核会加锁,会保证一致性的。
4. 性能问题
性能从系统层面和设备层面去分析;磁盘的物理特性从根本上决定了性能。IO的调度策略,系统调用也是致命杀手。
磁盘的寻道时间是相当的慢,平均寻道时间大概是在10ms,也就是是每秒只能100-200次寻道。
磁盘转速也是影响性能的关键,目前最快15000rpm,大概就每秒500转,满打满算,就让磁头不寻道,设想所有的数据连续存放在一个柱面上。大家可以算一下每秒最多可以读多少数据。当然这个是理论值。一般情况下,盘片转太快,磁头感应跟不上,所以需要转几圈才能完全读出磁道内容。
另外设备接口总线传输率是实际速率的上限。
另外有些等密度磁盘,磁盘外围磁道扇区多,线速度快,如果频繁操作的数据放在外围扇区,也能提高性能。
利用多磁盘并发操作,也不失为提高性能的手段。
这里给个业界经验值:机械硬盘顺序写~30MB,顺序读取速率一般~50MB好的可以达到100多M, SSD读达到~400MB,SSD写性能和机械硬盘差不多。
Ps:
O_DIRECT 和 RAW设备最根本的区别是O_DIRECT是基于文件系统的,也就是在应用层来看,其操作对象是文件句柄,内核和文件层来看,其操作是基于inode和数据块,这些概念都是和ext2/3的文件系统相关,写到磁盘上最终是ext3文件。
而RAW设备写是没有文件系统概念,操作的是扇区号,操作对象是扇区,写出来的东西不一定是ext3文件(如果按照ext3规则写就是ext3文件)。
一般基于O_DIRECT来设计优化自己的文件模块,是不满系统的cache和调度策略,自己在应用层实现这些,来制定自己特有的业务特色文件读写。但是写出来的东西是ext3文件,该磁盘卸下来,mount到其他任何linux系统上,都可以查看。
而基于RAW设备的设计系统,一般是不满现有ext3的诸多缺陷,设计自己的文件系统。自己设计文件布局和索引方式。举个极端例子:把整个磁盘做一个文件来写,不要索引。这样没有inode限制,没有文件大小限制,磁盘有多大,文件就能多大。这样的磁盘卸下来,mount到其他linux系统上,是无法识别其数据的。
两者都要通过驱动层读写;在系统引导启动,还处于实模式的时候,可以通过bios接口读写raw设备
【转】漫谈linux文件IO--io流程讲的很清楚的更多相关文章
- Linux文件的IO操作 一
系统调用 系统调用: 操作系统提供给用户程序调用的一组“特殊”接口,用户程序可以通过这组“特殊”接口来获得操作系统内核提供的服务 为什么用户程序不能直接访问系统内核提供的服务 为了更好地保护内核空间, ...
- 转 漫谈linux文件IO
在Linux 开发中,有几个关系到性能的东西,技术人员非常关注:进程,CPU,MEM,网络IO,磁盘IO.本篇文件打算详细全面,深入浅出.剖析文件IO的细节.从多个角度探索如何提高IO性能.本文尽量用 ...
- 漫谈linux文件IO
在Linux 开发中,有几个关系到性能的东西,技术人员非常关注:进程,CPU,MEM,网络IO,磁盘IO.本篇文件打算详细全面,深入浅出.剖析文件IO的细节.从多个角度探索如何提高IO性能.本文尽量用 ...
- (转)linux文件读写的流程
转自http://hi.baidu.com/_kouu/item/4e9db87580328244ef1e53d0 在<linux内核虚拟文件系统浅析>这篇文章中,我们看到文件是如何被打开 ...
- Linux文件的权限与属性
由于以前学习Linux的时候没有做比较全面的总结笔记,而且平时大部分工作都在windows上进行,所以关于Linux的一些知识点有所遗忘.近期难得空闲,翻阅书籍,学习<鸟哥的Linux私房菜&g ...
- linux文件io与标准io
文件IO实际是API,Linux对文件操作主要流程为:打开(open),操作(write.read.lseek),关闭(close). 1.打开文件函数open(): 涉及的头文件: #includ ...
- Linux文件IO操作
来源:微信公众号「编程学习基地」 目录 文件操作 Linux文件类型 Linux文件权限 修改文件权限 Linux error 获取系统调用时的错误描述 打印错误信息 系统IO函数 open/clos ...
- Linux系统编程(3)——文件与IO之fcntl函数
linux文件I/O用:open.read.write.lseek以及close函数实现了文件的打开.读写等基本操作.fcntl函数可以根据文件描述词来操作文件. 用法: int fcntl(int ...
- Linux中的IO复用接口简介(文件监视?)
I/O复用是Linux中的I/O模型之一.所谓I/O复用,指的是进程预先告诉内核,使得内核一旦发现进程指定的一个或多个I/O条件就绪,就通知进程进行处理,从而不会在单个I/O上导致阻塞. 在Linux ...
随机推荐
- 201521123032 《Java程序设计》第9周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1.常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自己 ...
- latch session allocation
应用反馈上午10点左右出现大量应用连接数据库报错 采集9点-10点和10点-11点的AWR报告进行分析 DB时间明显差异,再继续分析等待事件 可以看出有session相关的Latch等待事件,查看相关 ...
- NativeScript官方书籍:NativeScript-用你现有技术构建移动应用程序
大家好,我用nativescript做企业级移动应用开发一年多了.从最初只能看nativescript英文文档,到现在看到官方发布正式的书籍,感觉nativescript变得越来越好. 当然,在这个过 ...
- sed命令基础
sed是一种流编辑器,它是文本处理中非常中的工具,能够完美的配合正则表达式使用,功能不同凡响.处理时,把当前处理的行存储在临时缓冲区中,称为"模式空间"(pattern space ...
- ActiveMQ_Windows版本的安装部署
1, 保证电脑上安装了jdk6以上版本的java,并配置了好环境变量 : 2, 官方下载地址:http://activemq.apache.org/download-archives.html ,这里 ...
- 利用angularJs自定义指令(directive)实现在页面某一部分内滑块随着滚动条上下滑动
最近老大让我一个效果实现在页面某一部分内滑块随着滚动条上下滑动,说明一下我们项目使用技术angularJs.大家都知道,使用jquery很好实现. 那么angular如何实现呢,我用的是自定义指令(d ...
- [转]iOS 应用程序的生命周期
OS的应用程序的生命周期,还有程序是运行在前台还是后台,应用程序各个状态的变换,这些对于开发者来说都是很重要的. iOS系统的资源是有限的,应用程序在前台和在后台的状态是不一样的.在后台时,程序会受到 ...
- [js高手之路] 设计模式系列课程 - DOM迭代器(2)
如果你对jquery比较熟悉的话,应该用过 eq, first, last, get, prev, next, siblings等过滤器和方法.本文,我们就用迭代设计模式来封装实现,类似的功能 < ...
- 【转】开源中国上看到的一个vim的自动配置的好东西,分享下
https://www.oschina.net/p/onekey-to-vim-ide 变量有高亮,竖行上有直线定位,对python的支持效果更佳,从事C/C++开发的程序员使用也不错.
- Life Forms (poj3294 后缀数组求 不小于k个字符串中的最长子串)
(累了,这题做了很久!) Life Forms Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8683 Accepted ...