Java 加解密技术系列之 RSA

  • 概念
  • 工作流程
  • RSA
  • 代码实现
  • 加解密结果
  • 结束语


离上一次写博客感觉已经很长时间了,先吐槽一下,这个月以来,公司一直在加班,又是发版、上线,又是新项目太紧,具体的就不多说了,想听我吐槽的小伙伴,
可以私信给我(*^__^*)
。上一篇文章,已经把对称加密的算法讲完了。从今天开始,要说说非对称加密了。因为,非对称加密真的是太重要了,我们的日常生活中,都离不开非对称加密。
概念

在说 RSA 之前,首先聊聊什么是非对称加密。在讲对称加密的时候,就曾经说过,对称加密算法在加密和解密时使用的是同一个秘钥,加解密双方必须使用同一个密钥才能进行正常的沟通。而非对称加密则不然,非对称加密算法需要两个密钥来进行加密和解密,分别是公钥和私钥。
需要注意的一点,这个公钥和私钥必须是一对的,如果用公钥对数据进行加密,那么只有使用对应的私钥才能解密,反之亦然。由于加密和解密使用的是两个不同的密钥,因此,这种算法叫做非对称加密算法。

工作过程

如下图,甲乙之间使用非对称加密的方式传输数据。
在非对称加密中使用的主要算法有:RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。今天主要是介绍 RSA ,至于其他的算法,后续会选择几个进行介绍。

RSA

其实,在早在 1978 年的时候,RSA就已经出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。其原理就如上面的工作过程所述。
RSA 算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。

代码实现

下面来看一下具体的代码实现。
import com.google.common.collect.Maps;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder; import javax.crypto.Cipher;
import java.security.*;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Map; /**
* Created by xiang.li on 2015/3/3.
* RSA 加解密工具类
*/
public class RSA {
/**
* 定义加密方式
*/
private final static String KEY_RSA = "RSA";
/**
* 定义签名算法
*/
private final static String KEY_RSA_SIGNATURE = "MD5withRSA";
/**
* 定义公钥算法
*/
private final static String KEY_RSA_PUBLICKEY = "RSAPublicKey";
/**
* 定义私钥算法
*/
private final static String KEY_RSA_PRIVATEKEY = "RSAPrivateKey"; /**
* 初始化密钥
* @return
*/
public static Map<String, Object> init() {
Map<String, Object> map = null;
try {
KeyPairGenerator generator = KeyPairGenerator.getInstance(KEY_RSA);
generator.initialize(1024);
KeyPair keyPair = generator.generateKeyPair();
// 公钥
RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic();
// 私钥
RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate();
// 将密钥封装为map
map = Maps.newHashMap();
map.put(KEY_RSA_PUBLICKEY, publicKey);
map.put(KEY_RSA_PRIVATEKEY, privateKey);
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
return map;
} /**
* 用私钥对信息生成数字签名
* @param data 加密数据
* @param privateKey 私钥
* @return
*/
public static String sign(byte[] data, String privateKey) {
String str = "";
try {
// 解密由base64编码的私钥
byte[] bytes = decryptBase64(privateKey);
// 构造PKCS8EncodedKeySpec对象
PKCS8EncodedKeySpec pkcs = new PKCS8EncodedKeySpec(bytes);
// 指定的加密算法
KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
// 取私钥对象
PrivateKey key = factory.generatePrivate(pkcs);
// 用私钥对信息生成数字签名
Signature signature = Signature.getInstance(KEY_RSA_SIGNATURE);
signature.initSign(key);
signature.update(data);
str = encryptBase64(signature.sign());
} catch (Exception e) {
e.printStackTrace();
}
return str;
} /**
* 校验数字签名
* @param data 加密数据
* @param publicKey 公钥
* @param sign 数字签名
* @return 校验成功返回true,失败返回false
*/
public static boolean verify(byte[] data, String publicKey, String sign) {
boolean flag = false;
try {
// 解密由base64编码的公钥
byte[] bytes = decryptBase64(publicKey);
// 构造X509EncodedKeySpec对象
X509EncodedKeySpec keySpec = new X509EncodedKeySpec(bytes);
// 指定的加密算法
KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
// 取公钥对象
PublicKey key = factory.generatePublic(keySpec);
// 用公钥验证数字签名
Signature signature = Signature.getInstance(KEY_RSA_SIGNATURE);
signature.initVerify(key);
signature.update(data);
flag = signature.verify(decryptBase64(sign));
} catch (Exception e) {
e.printStackTrace();
}
return flag;
} /**
* 私钥解密
* @param data 加密数据
* @param key 私钥
* @return
*/
public static byte[] decryptByPrivateKey(byte[] data, String key) {
byte[] result = null;
try {
// 对私钥解密
byte[] bytes = decryptBase64(key);
// 取得私钥
PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(bytes);
KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
PrivateKey privateKey = factory.generatePrivate(keySpec);
// 对数据解密
Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
cipher.init(Cipher.DECRYPT_MODE, privateKey);
result = cipher.doFinal(data);
} catch (Exception e) {
e.printStackTrace();
}
return result;
} /**
* 私钥解密
* @param data 加密数据
* @param key 公钥
* @return
*/
public static byte[] decryptByPublicKey(byte[] data, String key) {
byte[] result = null;
try {
// 对公钥解密
byte[] bytes = decryptBase64(key);
// 取得公钥
X509EncodedKeySpec keySpec = new X509EncodedKeySpec(bytes);
KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
PublicKey publicKey = factory.generatePublic(keySpec);
// 对数据解密
Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
cipher.init(Cipher.DECRYPT_MODE, publicKey);
result = cipher.doFinal(data);
} catch (Exception e) {
e.printStackTrace();
}
return result;
} /**
* 公钥加密
* @param data 待加密数据
* @param key 公钥
* @return
*/
public static byte[] encryptByPublicKey(byte[] data, String key) {
byte[] result = null;
try {
byte[] bytes = decryptBase64(key);
// 取得公钥
X509EncodedKeySpec keySpec = new X509EncodedKeySpec(bytes);
KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
PublicKey publicKey = factory.generatePublic(keySpec);
// 对数据加密
Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
cipher.init(Cipher.ENCRYPT_MODE, publicKey);
result = cipher.doFinal(data);
} catch (Exception e) {
e.printStackTrace();
}
return result;
} /**
* 私钥加密
* @param data 待加密数据
* @param key 私钥
* @return
*/
public static byte[] encryptByPrivateKey(byte[] data, String key) {
byte[] result = null;
try {
byte[] bytes = decryptBase64(key);
// 取得私钥
PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(bytes);
KeyFactory factory = KeyFactory.getInstance(KEY_RSA);
PrivateKey privateKey = factory.generatePrivate(keySpec);
// 对数据加密
Cipher cipher = Cipher.getInstance(factory.getAlgorithm());
cipher.init(Cipher.ENCRYPT_MODE, privateKey);
result = cipher.doFinal(data);
} catch (Exception e) {
e.printStackTrace();
}
return result;
} /**
* 获取公钥
* @param map
* @return
*/
public static String getPublicKey(Map<String, Object> map) {
String str = "";
try {
Key key = (Key) map.get(KEY_RSA_PUBLICKEY);
str = encryptBase64(key.getEncoded());
} catch (Exception e) {
e.printStackTrace();
}
return str;
} /**
* 获取私钥
* @param map
* @return
*/
public static String getPrivateKey(Map<String, Object> map) {
String str = "";
try {
Key key = (Key) map.get(KEY_RSA_PRIVATEKEY);
str = encryptBase64(key.getEncoded());
} catch (Exception e) {
e.printStackTrace();
}
return str;
} /**
* BASE64 解密
* @param key 需要解密的字符串
* @return 字节数组
* @throws Exception
*/
public static byte[] decryptBase64(String key) throws Exception {
return (new BASE64Decoder()).decodeBuffer(key);
} /**
* BASE64 加密
* @param key 需要加密的字节数组
* @return 字符串
* @throws Exception
*/
public static String encryptBase64(byte[] key) throws Exception {
return (new BASE64Encoder()).encodeBuffer(key);
} /**
* 测试方法
* @param args
*/
public static void main(String[] args) {
String privateKey = "";
String publicKey = "";
// 生成公钥私钥
Map<String, Object> map = init();
publicKey = getPublicKey(map);
privateKey = getPrivateKey(map);
System.out.println("公钥: \n\r" + publicKey);
System.out.println("私钥: \n\r" + privateKey);
System.out.println("公钥加密--------私钥解密");
String word = "你好,世界!";
byte[] encWord = encryptByPublicKey(word.getBytes(), publicKey);
String decWord = new String(decryptByPrivateKey(encWord, privateKey));
System.out.println("加密前: " + word + "\n\r" + "解密后: " + decWord);
System.out.println("私钥加密--------公钥解密");
String english = "Hello, World!";
byte[] encEnglish = encryptByPrivateKey(english.getBytes(), privateKey);
String decEnglish = new String(decryptByPublicKey(encEnglish, publicKey));
System.out.println("加密前: " + english + "\n\r" + "解密后: " + decEnglish);
System.out.println("私钥签名——公钥验证签名");
// 产生签名
String sign = sign(encEnglish, privateKey);
System.out.println("签名:\r" + sign);
// 验证签名
boolean status = verify(encEnglish, publicKey, sign);
System.out.println("状态:\r" + status);
}
}

加解密结果

结束语

其实,看似很复杂的过程,用一句话就可以描述:使用公钥加密、私钥解密,完成了乙方到甲方的一次数据传递,通过私钥加密、公钥解密,同时通过私钥签名、公钥验证签名,完成了一次甲方到乙方的数据传递与验证,两次数据传递完成一整套的数据交互。
非对称加密算法的出现,就是为了解决只有一把密钥的加解密,只要这一把密钥丢失或者被公开,那么加密数据就很容易被攻击。同时,也正是由于非对称加密算法的出现,才有了后面的数字签名、数字证书等等。
好了,今天就到这吧,下一篇继续非对称加密,至于哪一种,到时候就知道了,这里先保密,(*^__^*) 嘻嘻。

9.Java 加解密技术系列之 RSA的更多相关文章

  1. Java 加解密技术系列文章

    Java 加解密技术系列之 总结 Java 加解密技术系列之 DH Java 加解密技术系列之 RSA Java 加解密技术系列之 PBE Java 加解密技术系列之 AES Java 加解密技术系列 ...

  2. 10.Java 加解密技术系列之 DH

    Java 加解密技术系列之 DH 序 概念 原理 代码实现 结果 结束语 序 上一篇文章中简单的介绍了一种非对称加密算法 — — RSA,今天这篇文章,继续介绍另一种非对称加密算法 — — DH.当然 ...

  3. 11.Java 加解密技术系列之 总结

    Java 加解密技术系列之 总结 序 背景 分类 常用算法 原理 关于代码 结束语 序 上一篇文章中简单的介绍了第二种非对称加密算法 — — DH,这种算法也经常被叫做密钥交换协议,它主要是针对密钥的 ...

  4. 8.Java 加解密技术系列之 PBE

    Java 加解密技术系列之 PBE 序 概念 原理 代码实现 结束语 序 前 边的几篇文章,已经讲了几个对称加密的算法了,今天这篇文章再介绍最后一种对称加密算法 — — PBE,这种加密算法,对我的认 ...

  5. 7.java 加解密技术系列之 AES

    java 加解密技术系列之 AES 序 概念 原理 应用 代码实现 结束语 序 这篇文章继续介绍对称加密算法,至于今天的主角,不用说,也是个厉害的角色 — — AES.AES 的出现,就是为了来替代原 ...

  6. 6. Java 加解密技术系列之 3DES

    Java 加解密技术系列之 3DES 序 背景 概念 原理 代码实现 结束语 序 上一篇文章讲的是对称加密算法 — — DES,这篇文章打算在 DES 的基础上,继续多讲一点,也就是 3 重 DES ...

  7. 5.Java 加解密技术系列之 DES

    Java 加解密技术系列之 DES 序 背景 概念 基本原理 主要流程 分组模式 代码实现 结束语 序 前 几篇文章讲的都是单向加密算法,其中涉及到了 BASE64.MD5.SHA.HMAC 等几个比 ...

  8. 4.Java 加解密技术系列之 HMAC

    Java 加解密技术系列之 HMAC 序 背景 正文 代码 结束语 序 上一篇文章中简单的介绍了第二种单向加密算法 — —SHA,同时也给出了 SHA-1 的 Java 代码.有这方面需求的童鞋可以去 ...

  9. 3.Java 加解密技术系列之 SHA

    Java 加解密技术系列之 SHA 序 背景 正文 SHA-1 与 MD5 的比较 代码实现 结束语 序 上一篇文章中介绍了基本的单向加密算法 — — MD5,也大致的说了说它实现的原理.这篇文章继续 ...

随机推荐

  1. sublimeText3插件安装

    1,官方下载sublimeText 3(百度搜索) 2,安装成功后按Ctrl+`调出console 3,然后输入 import urllib.request,os; pf = 'Package Con ...

  2. boostrap---btn

    bootstrap入门教程,按钮.按钮风格.下拉菜单等 本教程演示: bootstrap框架的按钮.按钮大小.按钮风格.按钮组.下拉菜单制作等. 使用的版本:Bootstrap v2.3.2 . 下面 ...

  3. 文本挖掘预处理之向量化与Hash Trick

    在文本挖掘的分词原理中,我们讲到了文本挖掘的预处理的关键一步:"分词",而在做了分词后,如果我们是做文本分类聚类,则后面关键的特征预处理步骤有向量化或向量化的特例Hash Tric ...

  4. js 模板引擎

    template = document.querySelector('#template').innerHTML, result = document.querySelector('.result') ...

  5. 少走弯路——Android对话框AlertDialog.Builder使用方法简述

    android的自定义对话框,不需要通过继承的方式来实现,因为android已提供了相应的接口Dialog Builder ,下面就是 样例: new AlertDialog.Builder(this ...

  6. 自动生成数学题型三 (框架Struts2)题型如 a+b=c(a、b、c都为分数)

    1. 约分分数 1.1 保留质数 /** * 将数值放入到fraction数组中 * @param fen 简要放的 int类型数值 */ public void fenshu(int fen) { ...

  7. [ext4]05 磁盘布局 - 延迟块组初始化

    延迟块组初始化,Ext4的新特性.如果对应的特性标识uninit_bg置位,那么inode bitmap和inode tables就不会初始化. 延迟块组初始化特性特性可以减少格式化耗时. 延迟块组初 ...

  8. 蓝桥杯-组素数-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  9. apache用户认证,ssl双向认证配置

    安装环境: OS:contos 6.4 httpd:httpd-2.2.15-59.el6.centos.i686.rpm openssl:openssl-1.0.1e-57.el6.i686.rpm ...

  10. poj1159二维树状数组

    Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows ...