You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

思路:

分析:深度优先搜索,尝试每次添加+或者-,

当当前cnt为nums数组的大小的时候,判断sum与S是否相等,

如果相等就result++。sum为当前cnt步数情况下的前面所有部分的总和。

参考:

https://www.liuchuo.net/archives/3098

int result;
int findTargetSumWays(vector<int>& nums, int S) {
dfs(, , nums, S);
return result;
}
void dfs(int sum, int cnt, vector<int>& nums, int S) {
if (cnt == nums.size()) {
if (sum == S)
result++;
return;
}
dfs(sum + nums[cnt], cnt + , nums, S);
dfs(sum - nums[cnt], cnt + , nums, S);
}

如下是动态规划版本介绍,参考:https://discuss.leetcode.com/topic/76243/java-15-ms-c-3-ms-o-ns-iterative-dp-solution-using-subset-sum-with-explanation

The recursive solution is very slow, because its runtime is exponential

The original problem statement is equivalent to:
Find a subset of nums that need to be positive, and the rest of them negative, such that the sum is equal to target

Let P be the positive subset and N be the negative subset
For example:
Given nums = [1, 2, 3, 4, 5] and target = 3 then one possible solution is +1-2+3-4+5 = 3
Here positive subset is P = [1, 3, 5] and negative subset is N = [2, 4]

Then let's see how this can be converted to a subset sum problem:

                  sum(P) - sum(N) = target
sum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)
2 * sum(P) = target + sum(nums)

So the original problem has been converted to a subset sum problem as follows:
Find a subset P of nums such that sum(P) = (target + sum(nums)) / 2

Note that the above formula has proved that target + sum(nums) must be even
We can use that fact to quickly identify inputs that do not have a solution (Thanks to @BrunoDeNadaiSarnaglia for the suggestion)
For detailed explanation on how to solve subset sum problem, you may refer to Partition Equal Subset Sum

Here is Java solution (15 ms)

    public int findTargetSumWays(int[] nums, int s) {
int sum = 0;
for (int n : nums)
sum += n;
return sum < s || (s + sum) % 2 > 0 ? 0 : subsetSum(nums, (s + sum) >>> 1);
} public int subsetSum(int[] nums, int s) {
int[] dp = new int[s + 1];
dp[0] = 1;
for (int n : nums)
for (int i = s; i >= n; i--)
dp[i] += dp[i - n];
return dp[s];
}

Here is C++ solution (3 ms)

class Solution {
public:
int findTargetSumWays(vector<int>& nums, int s) {
int sum = accumulate(nums.begin(), nums.end(), 0);
return sum < s || (s + sum) & 1 ? 0 : subsetSum(nums, (s + sum) >> 1);
} int subsetSum(vector<int>& nums, int s) {
int dp[s + 1] = { 0 };
dp[0] = 1;
for (int n : nums)
for (int i = s; i >= n; i--)
dp[i] += dp[i - n];
return dp[s];
}
};

Dynamic Programming方法

参考:https://zhangyuzhu13.github.io/2017/02/13/LeetCode%E4%B9%8B494.%20Target%20Sum%E6%80%9D%E8%B7%AF/

要想到DP方法需要再分析一下题目了,乍一看似乎看不出有求最优解的痕迹。我所熟悉的使用DP场景都是需要求最优解,找最优子结构的。这个问题不明显。但可以往0-1背包问题上想一想,每个数字为正或为负,同时增一倍,则变为了,每个数字不选,或选2倍。这就靠到0-1背包上了。则基数就不再是0,而是nums数组中所有数字之和为基数,在此基础上进行选2倍或不选,目标数字S也相应变为S+Sum。依靠数学公式推论为:设最后选择为正的之和为in,为负的之和为out,则有公式:
in - out = S
in + out = sum
推出:2*in = S + sum
则我们需要的就是把目标改为S+sum,把每个数字改为原来的2倍,从中选择数字,使之和为S+sum。
因此,DP解之。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 
public class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int i = 0;i < nums.length;i++){
sum += nums[i];
nums[i] *= 2;
}
if(sum < S ) return 0;
int target = sum + S;
int[] dp = new int[target+1];
dp[0] = 1;
for(int i = 0;i < nums.length; i++){
for(int j = target;j >= 0;j--){
if(j >= nums[i]){
dp[j] += dp[j-nums[i]];
}
}
}
return dp[target];
}
}

然后运行时间就。。到了20ms,击败80%+,DP大法好。。

 

[leetcode-494-Target Sum]的更多相关文章

  1. LN : leetcode 494 Target Sum

    lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...

  2. [LeetCode] 494. Target Sum 目标和

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  3. Leetcode 494 Target Sum 动态规划 背包+滚动数据

    这是一道水题,作为没有货的水货楼主如是说. 题意:已知一个数组nums {a1,a2,a3,.....,an}(其中0<ai <=1000(1<=k<=n, n<=20) ...

  4. [Leetcode] DP -- Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  5. LC 494. Target Sum

    问题描述 You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 ...

  6. 【LeetCode】494. Target Sum 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  7. 【leetcode】494. Target Sum

    题目如下: 解题思路:这题可以用动态规划来做.记dp[i][j] = x,表示使用nums的第0个到第i个之间的所有元素得到数值j有x种方法,那么很容易得到递推关系式,dp[i][j] = dp[i- ...

  8. 494. Target Sum - Unsolved

    https://leetcode.com/problems/target-sum/#/description You are given a list of non-negative integers ...

  9. 494. Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  10. 494. Target Sum 添加标点符号求和

    [抄题]: You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have ...

随机推荐

  1. Phaser类详解

    Phaser允许并发多阶段任务.Phaser类机制是在每一步结束的位置对线程进行同步,当所有的线程都完成了这一步,才允许执行下一步. 一个Phaser对象有两种状态: 活跃态(Active):当存在参 ...

  2. Memcache服务搭建

    Memcache Memcache的作用网上资料都讲的很好,说简单点就是减轻读取数据库的压力,原理也很简单: 被请求的数据会先到memcache里去取,如果没有就去数据库里取,顺便给memcache带 ...

  3. 【JAVAWEB学习笔记】23_Listener和邮箱服务器

    监听器Listener 学习目标 案例-使用监听器完成定时生日祝福 一.监听器Listener javaEE包括13门规范 在课程中主要学习 servlet技术 和 jsp技术 其中 servlet规 ...

  4. 张高兴的 Windows 10 IoT 开发笔记:使用 ADS1115 读取模拟信号

    考虑到 Raspberry Pi 读取模拟信号是很烦人的事情,更何况是在没人玩的 Windows 10 IoT 下,所以准备正儿八经的写点东西. 需求:使用 Raspberry Pi 读取输出模拟信号 ...

  5. 高效工作的秘诀——Doit.im使用总结报告

    从上次购买doit.im pro账户到现在已经快一年了,从摸索到现在的熟悉,目前这款软件已经成为我工作生活中最为重要的效率工具,在此之前也用过很多软件进行时间管理,综合起来评价,doit应该算是最棒的 ...

  6. 019 关联映射文件中集合标签中的lazy(懒加载)属性

    <set>.<list>集合上,可以取值:true/false/extra,(默认值为:true) 实例一:(集合上的lazy=true(默认))class默认lazy=tru ...

  7. 电商app开发新趋势!如何突显竞争力?

    2017年是电商变化最大的一年,同时,也是最多机遇的一年,更是电商最好的时代,如最近所看到的亚马逊的市值已经超过了美国8大零售商的总和,带领美国率先走向了新零售时代;马云也在做改变,试图与线下的大卖场 ...

  8. MySQL主从同步报错故障处理集锦

    前言 在发生故障切换后,经常遇到的问题就是同步报错,下面是最近收集的报错信息. 记录删除失败 在master上删除一条记录,而slave上找不到 Last_SQL_Error: Could not e ...

  9. JMETER 不同线程组 变量值 的参数传递

    线程组 1   在线程组1中使用__setProperty函数设置jmeter属性值(此值为全局变量值),将所需变量值如${token}设置为jmeter属性值,即newtoken,示例: 1.添加- ...

  10. iOS安全攻防之使用 Charles 进行网络数据抓包 和 Paros 网络抓包

    Charles 是 Mac 系统下常用的网路抓包工具(Paros 也不错),windows 下常用 fiddler.正版的 Charles 是收费的(PS:支持正版),天朝人民比较喜欢破解版的Char ...