统计学习方法:罗杰斯特回归及Tensorflow入门
作者:桂。
时间:2017-04-21 21:11:23
链接:http://www.cnblogs.com/xingshansi/p/6743780.html
前言
看到最近大家都在用Tensorflow,一查才发现火的不行。想着入门看一看,Tensorflow使用手册第一篇是基于MNIST的手写数字识别的,用到softmax regression,而这个恰好与我正在看的《统计信号处理》相关。本文借此梳理一下:
1)罗杰斯特回归
2)Softmax Regression
3)基于Tensorflow的MNIST手写数字识别框架
内容为自己的学习记录,其中多有借鉴他人的地方,最后一并给出链接。
一、罗杰斯特回归(Logistic Regression)
A-问题描述
一般说的Logistic回归,是指二分类问题。
对于连续的变量X,如果说它服从Logistic回归,则:
对应概率密度以及分布函数:
F(x)更像是一个threshold,f(x)的表达式也利于求导。
定义Logistic 回归模型:
为输入,为对应输出,二项Logistic回归对应如下模型:
联系到之前写的感知机:
分类时,对应概率:
为正的概率大,为负的概率小,这个指数有点像把正/负→进行指数处理,这样就容易理解了。
有时为了表示方便,记:,则表达式简化为:
为什了叫Logistic regression呢?
这样明显是一个线性回归的表达式。
B-理论分析
对于参数的求解,同感知机一样,就是求解w。利用最大似然求解:
定义sigmoid函数:
准则函数重新写为:
可以借助梯度下降或者牛顿法,这几个方法之前已经有过介绍。
利用求解得到的w,即可以进行概率判断,哪个概率大就判给哪个类别,整个思路与感知机也是一样的:
C-理论应用
用一个code说明其工作原理,还是借助之前感知器用的例子,因为Logistic回归可以认为是Softmax回归的特例,这里借用softmax框架给出对应代码:
%Logistic regression
clear all; close all; clc;
%Every category samples
N = 100;
X = [randn(N,2)+2*ones(N,2);...
randn(N,2)-2*ones(N,2)];
figure;
subplot 121
label = [ones(N,1);2*ones(N,1)];
plot(X(label==1,1),X(label==1,2),'b.');hold on;
plot(X(label==2,1),X(label==2,2),'r.');hold on;
%%Train
numClass = 2;
parm.learningRate = 0.5;
pram.iter = 5000;
parm.precost = 0;
X = [ones(size(X,1),1), X]';
[nfeatures, nsamples] = size(X);
W = zeros(nfeatures, numClass);
% 1, 2, 3 -> 001, 010, 100.
groundTruth = full(sparse(label, 1:nsamples, 1));
for i = 1:pram.iter
rsp = W'*X;
rsp = bsxfun(@minus, rsp, max(rsp, [], 1));
rsp = exp(rsp);
prob = bsxfun(@rdivide, rsp, sum(rsp));
% compute gradient based on current probability
grad = - X * (groundTruth - prob)' / nsamples ;
% update W
W(:,2:end) = W(:,2:end) - parm.learningRate * grad(:,2:end);
% compute cost
logProb = log(prob);
idx = sub2ind(size(logProb), label', 1:size(logProb, 2));
parm.cost = - sum(logProb(idx)) / nsamples;
if i~=0 && abs(parm.cost - parm.precost) / parm.cost <= 1e-4
break;
end
parm.precost = parm.cost;
end
%Predict
rsp = W' * X;
[~, prediction] = max(rsp, [], 1);
subplot 122
X = X(2:end,:)';
plot(X(prediction==1,1),X(prediction==1,2),'b.');hold on;
plot(X(prediction==2,1),X(prediction==2,2),'r.');hold on;
x = -5:.1:5;
b = W(1,2);
y = -W(2,2)/W(3,2)*x-b/W(3,2);
plot(x,y,'k','linewidth',2);
对应结果图:
二、Softmax 回归
Logistic回归分析的是两类,对于多类的情形,通常称为:Softmax 回归。基于概率所以soft,概率中最大值所以Max。
其实这个式子可以理解为Y=K时,$w_k*x = 0$,上面式子可以表述为,为了与下面表述一致,这里w改为$\theta$表示:
假设样本个数为m,同logistic回归类似,Softmax准则函数可以写为:
进一步写为:
思路同Logistic回归,同样利用梯度下降/牛顿-Rapson可以求解。求解出w:
其中,
分类的思路与Logistic回归也是完全一致。另外在求解的时候,可以发现:
求解的时候,都减去一个数,是不影响结果的。前面提到Y=K时,$w_k*x = 0$,其实有一个为零就行,哪一类是无所谓的,所以优化只优化K-1,给出代码:
%Test Softmax Regression
clear all; close all; clc;
N = 100;
X = [randn(N,2)+5*ones(N,2);...
randn(N,2)-1*ones(N,2);...
randn(N,2)-4*ones(N,2)];
figure;
subplot 121
label = [ones(N,1);2*ones(N,1);3*ones(N,1)];
plot(X(label==1,1),X(label==1,2),'b.');hold on;
plot(X(label==2,1),X(label==2,2),'r.');hold on;
plot(X(label==3,1),X(label==3,2),'k.');hold on;
title('Orignal Data')
%%Train
numClass = 3;
learningRate = 0.5;
X = [ones(size(X,1),1), X]';
[nfeatures, nsamples] = size(X);
W = zeros(nfeatures, numClass);
% 1, 2, 3 -> 001, 010, 100.
groundTruth = full(sparse(label, 1:nsamples, 1));
iter = 5000;
precost = 0;
for i = 1:iter
rsp = W'*X;
rsp = bsxfun(@minus, rsp, max(rsp, [], 1));
rsp = exp(rsp);
prob = bsxfun(@rdivide, rsp, sum(rsp));
% compute gradient based on current probability
grad = - X * (groundTruth - prob)' / nsamples ;
% update W
W(:,2:end) = W(:,2:end) - learningRate * grad(:,2:end);
% compute cost
logProb = log(prob);
idx = sub2ind(size(logProb), label', 1:size(logProb, 2));
cost = - sum(logProb(idx)) / nsamples;
if i~=0 && abs(cost - precost) / cost <= 1e-4
break;
end
precost = cost;
end
%Predict
rsp = W' * X;
[~, prediction] = max(rsp, [], 1);
subplot 122
X = X(2:end,:)';
plot(X(prediction==1,1),X(prediction==1,2),'b.');hold on;
plot(X(prediction==2,1),X(prediction==2,2),'r.');hold on;
plot(X(prediction==3,1),X(prediction==3,2),'k.');hold on;
title('Prediction')
对应结果(线性可分时,结果正确,线性不可分时,边界点容易出现错误,如下图):
而实际应用中,我们不愿将任何一个$\theta$直接置零,而是保留所有,但此时我们需要对代价函数做一个改动:加入权重衰减。准则函数变为:
这个时候只要将上面对应的code按如下修改即可:
grad = - X * (groundTruth - prob)' / nsamples +.02 * W;%lamdba = 0.02
% grad = - X * (groundTruth - prob)' / nsamples ;
% update W
% W(:,2:end) = W(:,2:end) - learningRate * grad(:,2:end);
W = W - learningRate * grad;
三、基于Tensorflow的MNIST手写数字识别
MNIST数据库是一个手写数字识别数据库,
MNIST(Mixed National Institude of Standards and Technology database),由几万张图片组成,其中每个照片像素为28*28(在读取时已经被拉成28*28=784的向量了),训练数据集train:55000个样本,验证数据集validation:5000个样本,测试数据集:10000个样本。
首先分别读取训练和测试数据:
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
先看看数据长什么样,任意读取一张图片:
#imshow data
imgTol = mnist.train.images
img = np.reshape(imgTol[1,:],[28,28])
plt.imshow(img)
大概就是这个样子(其实是个gray图).
下面开始对数据进行基于Softmax Regression的处理。
首先创建一个会话(session),为什么需要创建session可以参考Tensorflow基本用法:
import tensorflow as tf
sess = tf.InteractiveSession()
通过为输入图像和目标输出类别创建节点,来开始构建计算图:
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
其中'None'表示该维度大小不指定。
我们现在为模型定义权重W
和偏置b
。可以将它们当作额外的输入量,但是TensorFlow有一个更好的处理方式:变量
。一个变量
代表着TensorFlow计算图中的一个值,能够在计算过程中使用,甚至进行修改。在机器学习的应用过程中,模型参数一般用Variable
来表示:
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
变量
需要通过seesion初始化后,才能在session中使用。这一初始化步骤为,为初始值指定具体值(本例当中是全为零),并将其分配给每个变量
,可以一次性为所有变量
完成此操作:
sess.run(tf.initialize_all_variables())
初始化完成后,接下来可以实现Softmax Regression了:
y = tf.nn.softmax(tf.matmul(x,W) + b)
softmax是tf.nn下的一个函数,tf.nn包含了很多神经网络的组件,tf.matmul在tensorflow里的意义是矩阵相乘。给出损失函数(交叉熵):
交叉熵没听过其实也不要紧,Maximum Likelihood(ML, 最大似然)估计应该都知道吧?
其中N为样本总数,且
我们频数以及频率是观测得到的,如何估计概率呢?我们通常用最大似然:
如果变形一下呢?同除以N:
最大似然估计不就是最小交叉熵估计?另一方面,交叉熵对误差的衡量类似联合概率密度的作用。给出对应code:
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
reduce.sum为求和,reduce.mean为求取均值。有了准则函数以及理论框架,利用梯度下降进行训练:
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
这里利用小批量梯度mini-batch下降,batch = 50个训练样本:
for i in range(1100):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
训练后进行预测并打印:
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
给出总的code:
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #imshow data
#imgTol = mnist.train.images
#img = np.reshape(imgTol[1,:],[28,28])
#plt.imshow(img) sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
for i in range(1100):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_: batch[1]}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
预测结果为:91.56%.
参考:
- Softmax regression:http://deeplearning.stanford.edu/wiki/index.php/Softmax_Regression
- 李航:《统计学习方法》
- Tensorflow官网文档:https://www.tensorflow.org/get_started/mnist/beginners
- http://tensorfly.cn/tfdoc/tutorials/mnist_pros.html
统计学习方法:罗杰斯特回归及Tensorflow入门的更多相关文章
- 统计学习方法6—logistic回归和最大熵模型
目录 logistic回归和最大熵模型 1. logistic回归模型 1.1 logistic分布 1.2 二项logistic回归模型 1.3 模型参数估计 2. 最大熵模型 2.1 最大熵原理 ...
- (转)TensorFlow 入门
TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...
- TensorFlow 入门之手写识别(MNIST) softmax算法
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- 统计学习方法学习(四)--KNN及kd树的java实现
K近邻法 1基本概念 K近邻法,是一种基本分类和回归规则.根据已有的训练数据集(含有标签),对于新的实例,根据其最近的k个近邻的类别,通过多数表决的方式进行预测. 2模型相关 2.1 距离的度量方式 ...
- 李航《统计学习方法》CH01
CH01 统计学方法概论 前言 章节目录 统计学习 监督学习 基本概念 问题的形式化 统计学习三要素 模型 策略 算法 模型评估与模型选择 训练误差与测试误差 过拟合与模型选择 正则化与交叉验证 正则 ...
- 转:TensorFlow入门(六) 双端 LSTM 实现序列标注(分词)
http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @cr ...
- 统计学习方法:CART算法
作者:桂. 时间:2017-05-13 14:19:14 链接:http://www.cnblogs.com/xingshansi/p/6847334.html . 前言 内容主要是CART算法的学 ...
- 《统计学习方法》笔记三 k近邻法
本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...
- TensorFlow 入门之手写识别CNN 三
TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...
随机推荐
- ASP日期格式化函数
Public Function GetFormatDate(DateAndTime, para)On Error Resume NextDim y, m, d, h, mi, s, strDateTi ...
- css样式表1 2017-03-11
样式表 DIV + CSS 一. 样式表的分类 以下均以div标签为例,可以换成其他标签 1. 内联样式表 格式: style="属性1:属性值1:属性2:属性值2:属性3: ...
- 获取3个月前的时间(获取某一天的时间 NSDate)
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Menlo } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; ...
- 《C++之那些年踩过的坑(二)》
C++之那些年踩过的坑(二) 作者:刘俊延(Alinshans) 本系列文章针对我在写C++代码的过程中,尤其是做自己的项目时,踩过的各种坑.以此作为给自己的警惕. 今天讲一个小点,虽然小,但如果没有 ...
- HTML5微数据
本篇文章是一个纯搬运贴,原博主是在是做的太详细了 原贴地址:http://www.zhangxinxu.com/wordpress/2011/12/html5扩展-微数据-丰富网页摘要/ 一.微数据是 ...
- MongoDB一般安装
MongoDB一般安装 1.首先到官网(http://www.mongodb.org/downloads )下载合适的安装包,目前的最新版本为2.6 安装包有zip和msi格式的,这里推荐下载zip格 ...
- GreenDao 工具类 --- 使用 Json 快速生成 Bean、表及其结构,"炒鸡"快!
作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:http://www.cnblogs.com/linguan ...
- 如何在RecyclerView上面实现"拖放"和"滑动删除"-2
拖动手柄 在设计一个支持"拖放"的列表时, 通常提供一个在触摸时初始化拖拽的"拖动手柄". 因其可发现性和可用性而被Material Guidelines所推荐 ...
- Visual Studio 2017 新特性
全新的安装体检 VS2017更好的支持了按需安装的特点,用户可以仅选择需要的功能安装,节省了不少的Disk 最小的安装仅有几百兆,但也支持20多种编程语言的编辑和源码管理 支持创建自定义的离线安装包 ...
- 用Java实现将多级文件夹下的所有文件统一放到一个文件夹中
每次下了电影(男生懂得呦),每部电影都放在一个单独的文件夹里,看的时候很是不方便啊,一直重复着进入文件夹.后退,再进.再退的操作,而手动把这些电影全部复制出来又太繁琐.因此为了解决这个问题,用IO写了 ...