首先回顾了几个Linear Model的共性:都是算出来一个score,然后做某种变化处理。

既然Linear Model有各种好处(训练时间,公式简单),那如何把Linear Regression给应用到Classification的问题上呢?到底能不能迁移呢?

总结了如下的集中Linear Model的error functions的表达式:

这里都提炼出来了ys这一项,y表示需要更正的方向{+1,-1},s表示需要更正的幅度(score)

三种error function可以这么理解:

(1)0/1 error : 幅度s固定,y表示方向

(2)square error : y很正或很负,error都非常大(注意这里只需要y很大或很下,error就收不住了);只有当ys很接近1的时候,error才可能接近0

(3)cross-entropy error : 如果ys很负的话,那么error就无穷大;如果ys很正的话,那么error无限接近0

再画出几种model的error function,可以看到:

(1)square error是不太合适的,ys>>1的时候,error衡量的过了,不合适。

(2)cross-entropy error也不太合适,因为在0到-1之间位于0/1 error下面了

如果想合适的话,可以对cross-entropy进行放缩:把ln换成log2,就OK了。

这里有个Point值得关注,为啥要放缩呢?错误率低不是更好么?

其实这跟目的有关:

(1)首先我们的目的是要用regression来代替classification(为啥要替代?因为PLA/Pocket是NP-hard的问题,不好整;而Linear Model在最优化之后,求解比较容易了),如果regression和classification在性能上差不多,那就可以替代了。

(2)因此,我们把cross-entropy error来scale成0/1 error的upper bound,目的就是让cross-entropy error低的时候,0/1error也低,放缩一下是为了说bound住这个事情。

再简单些就是说,如果实际中linear model用regression给出来的方法分类效果好,那么PLA/Pocket分类效果也好。

接下来对比了PLA、Linear Regression 和 Logistic Regression的方法优缺点:

(1)PLA:线性可分时候很犀利;如果不可分,那就只好Pocket

(2)Linear Regression:最优化可以求出来analytics close solution;但是当|ys|很大的时候,positive direction和negative direction的bound都太松太松了

(3)Logistic Regression:gradient descent可以求解;但是negatvie direction方向bound比较松

总结一些实际经验:linear regression可以作为PLA/Pocket/Logistic Regression的初始值设置。

接下来讲了一种Stochastic Gradient Descent的方法:

(1)原来是所有点在算梯度,然后取平均,再更新w;随机梯度下降,是不用每次算所有点了,每次算一个点,用这个点代替所有点的平均。

(2)敢这么做的原因:是因为 stochastic gradient = true gradient + zero-mean 'noise' directions;因为是zero-mean的noise,所以可以得到average true gradient ≈ average stochastic gradient

(3)SGD方法在logistic regression的应用公式,非常像PLA的公式

(4)从实际情况出发,一般迭代次数达到一定,可以认为SGD已经获得了最佳的结果;ita在实际经验中,一般取值为0.1左右合适。

随后,由binary classification问题延伸到了multiclass的问题,总体来说有两种方法:

1. One-Versus-ALL (OVA) Decomposition

意思就是

(1)每次把一个class和非这个class的当成目标两类,用logistic regression分这两类

(2)分类时输入某个点,然后看这个点上取哪一类的概率最大

这里有一点点儿问题:(2)点中不一定所有类别的概率和是1,虽然实际中影响不大,但是统计学的还是有严谨的方法(multinomial logistic regression)

当类别很多的时候(比如,K=100)那么,每次用logistic regression的时候,正样本和负样本的差别非常大,这样不容易得出正确结果。

为了解决OVA的unbalance问题:每次只取两个类,一共有K类,做C(K,2)次logistic regression就OK了;当给一个输入点的时候,用这C(K,2)个分类器给所有K个类别投票,取票数大的作为输出结果。

这种方法的缺点是:可能效率会低一些(K次变成C(K,2)次)。

但是,如果类别很多,每一类的样本量都差不多的时候,其实OVO的方法不一定比OVA方法效率低。

【Linear Models for Binary Classification】林轩田机器学习基石的更多相关文章

  1. (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem

    (转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...

  2. 【Linear Regression】林轩田机器学习基石

    这一节开始讲基础的Linear Regression算法. (1)Linear Regression的假设空间变成了实数域 (2)Linear Regression的目标是找到使得残差更小的分割线(超 ...

  3. 【 Logistic Regression 】林轩田机器学习基石

    这里提出Logistic Regression的角度是Soft Binary Classification.输出限定在0~1之间,用于表示可能发生positive的概率. 具体的做法是在Linear ...

  4. 【The VC Dimension】林轩田机器学习基石

    首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么E ...

  5. 【Theory of Generalization】林轩田机器学习基石

    紧接上一讲的Break Point of H.有一个非常intuition的结论,如果break point在k取到了,那么k+1, k+2,... 都是break point. 那么除此之外,我们还 ...

  6. 【Training versus Testing】林轩田机器学习基石

    接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够 ...

  7. 林轩田机器学习基石课程学习笔记5 — Training versus Testing

    上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...

  8. 林轩田机器学习基石笔记3—Types of Learning

    上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要 ...

  9. 【Linear Support Vector Machine】林轩田机器学习技法

    首先从介绍了Large_margin Separating Hyperplane的概念. (在linear separable的前提下)找到largest-margin的分界面,即最胖的那条分界线.下 ...

随机推荐

  1. 二维码生成的WEB api方法

    /// <summary> /// 获取二维码 /// </summary> /// <param name="size">编码测量度,值越大生 ...

  2. 位图算法-hash算法的后继应用

    判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了.位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的 ...

  3. python_1_变量的使用

    print("hello word") name="Qi Zhiguang" print("My name is",name) name2= ...

  4. 【转】Druid连接池一个设置引发的血案

    https://my.oschina.net/haogrgr/blog/224010 今天在一台配置很低的机器上运行批量更新的程序~~~ 大概跑了三十分钟~~~这配置~~~这程序~~~ 然后华丽丽的报 ...

  5. 楔积(Wedge Procut)

    原文链接 由拓扑学中表面(Surface)的定义及实例引入楔积的概念. 基础知识 先看Surface在欧几里得空间内的定义: 所有在Omega中的点w(参数空间中的点)被记作: 对应在R3中(欧几里德 ...

  6. C# while语句

    一.C# while语句 while语句是用于重复执行程序代码的语句. 语法格式如下: while(boolean-expression){    embedded-statement} 当boole ...

  7. 【Effective C++读书笔记】序

    C++ 是一个难学易用的语言! [C++为什么难学?] C++的难学,不仅在其广博的语法,以及语法背后的语义,以及语义背后的深层思维,以及深层思维背后的对象模型: C++的难学还在于它提供了四种不同而 ...

  8. 【PHP】Maximum execution time of 30 seconds exceeded解决办法

    Maximum execution time of 30 seconds exceeded,今天把这个错误的解决方案总结一下: 简单总结一下解决办法: 报错一:内存超限,具体报错语句忘了,简单说一下解 ...

  9. Redis------Set集合类型

    set是string类型的无序集合 类比:你的朋友不能超过2的32次方-1个元素 基本添加删除操作 取并集 取交集 取差集 注意:每个元素的各个元素不能重复 应用场合:qq好友推荐‘ TomFri 的 ...

  10. 深入理解PHP数组函数和预定义接口

    一. PHP对数组的过滤 函数: array_filter(p1[,p2]) 参数p1是要过滤的数组,参数p2是自定义过滤会掉函数(可以是匿名函数) 例子: <?php $arr = ['',n ...