【BZOJ4033】[HAOI2015]树上染色 树形DP
【BZOJ4033】[HAOI2015]树上染色
Description
Input
Output
Sample Input
1 2 3
1 5 1
2 3 1
2 4 2
Sample Output
17
【样例解释】
将点1,2染黑就能获得最大收益。
题解:一开始想用网络流,没想到是树形DP~
用f[i][j]表示在i的子树中选择j个黑点所能得到的最大收益(先只考虑在i子树中的边的贡献),然后跑树形背包即可。
然后考虑i到父亲的这条边的贡献,即有多少点对经过了这条边。用子树内的黑(白)点*子树外的黑(白)点个数*边权,最后将贡献加到f值上即可。
注意不要写丑导致复杂度变为O(n^3)哦~
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=2010;
typedef long long ll;
int n,m,cnt;
int to[maxn<<1],next[maxn<<1],head[maxn],fa[maxn],siz[maxn];
ll dep[maxn],f[maxn][maxn],val[maxn<<1];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void dfs(int x)
{
f[x][0]=f[x][1]=0,siz[x]=1;
int i,j,k;
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa[x])
{
fa[to[i]]=x,dep[to[i]]=val[i],dfs(to[i]);
for(k=min(siz[x],m);k>=0;k--)
for(j=min(siz[to[i]],m-k);j>=0;j--)
f[x][k+j]=max(f[x][k+j],f[x][k]+f[to[i]][j]);
siz[x]+=siz[to[i]];
}
for(i=0;i<=min(siz[x],m);i++) f[x][i]+=dep[x]*(i*(m-i)+(siz[x]-i)*(n-siz[x]-m+i));
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
n=rd(),m=rd();
int i,a,b,c;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) a=rd(),b=rd(),c=rd(),add(a,b,c),add(b,a,c);
memset(f,0xfe,sizeof(f));
dfs(1);
printf("%lld",f[1][m]);
return 0;
}
【BZOJ4033】[HAOI2015]树上染色 树形DP的更多相关文章
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- [bzoj4033][HAOI2015]树上染色_树形dp
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...
- 【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...
随机推荐
- apache的order allow deny
这个东西确实挺容易让我们迷糊.其实也不难,只要你掌握这样一条规律即可:首先举个例子: Order deny,allowdeny from allallow from 127.0.0.1 我们判断的依 ...
- Unicode类别
Unicode 通用类别: http://msdn.microsoft.com/zh-cn/library/20bw873z(VS.80).aspx 类别 说明 Lu 字母,大写 Ll 字母,小写 L ...
- 分布式服务自增长唯一ID小结
1.常用生成唯一ID的方式,例如UUID 2.生成唯一自自增长ID方式: 例如: Zookeeper的增加ID: redis的incr方法 mongodb的objectId 3.采用雪花模型 如下代码 ...
- MySQL MID()函数用法
SQL MID() 函数用于得到一个字符串的一部分.这个函数被MySQL支持,但不被MS SQL Server和Oracle支持.在SQL Server, Oracle 数据库中,我们可以使用 SQL ...
- [GraphQL] Reuse Query Fields with GraphQL Fragments
A GraphQL fragment encapsulates a collection of fields that can be included in queries. In this vide ...
- C++ 设置控制台输出颜色
#include <stdint.h> #include <iostream> #include <string> #include <Windows.h&g ...
- S1:适配器 Adapter
将一个类的接口转换为用户期望的另外一个接口.适配器使得原本由于接口不兼容而不能一起工作的类可以一起工作 UML: 一.类适配器: class A { public function methodA ...
- jquery插件:aotocomplete
aotocomplete.js http://blog.csdn.net/smeyou/article/details/7980273?_t_t_t=0.3565731019350138 $(func ...
- 把数据库里面的stu表中的数据,导出到excel中
# 2.写代码实现,把我的数据库里面的stu表中的数据,导出到excel中 #编号 名字 性别 # 需求分析:# 1.连接好数据库,写好SQL,查到数据 [[1,'name1','男'],[1,'na ...
- Eclipse 常用快捷键清单
罗列了一些常用的快捷键(显红为很实用的快捷键) Ctrl+Shift+L:快速打开所有快捷键列表 一.文件 F2 :快速打开信息提示.重命名F3 :打开声明(同Ctrl+左鼠)F4 :打开类型层次结构 ...