Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 20971   Accepted: 5290

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 
 
//题意:给出 A,B 问 A^B 的所有因数(包括 1 和本身)之和余 9901 的值
这道题用了很多个数学的方法,一个个讲
首先,我们要知道怎么分解一个数,所以用到了<唯一分解定理>: 任何大于1的自然数,都可以唯一分解成有限个质数的乘积
将 A 分解后,将所有质数个数乘 B 就是 A^B 的该质数的个数了.
代码:
 void Zhi()
{
int t = a;
for (int i=;i*i<=a;i++)
{
if (t%i==)
{
p[z]=i;
p_n[z]=;
t/=i;
while (t%i==)
{
p_n[z]++;
t/=i;
}
z++;
}
if (t==) break;
if (i!=)
i++;//2.3.5.7.9...
}
if (t!=)//本身就是质数
{
p[z]=t;
p_n[z]=;
z++;
}
}
 
为什么要分解呢,因为要求约数和
<约数和公式>

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有 A 的所有因子之和为

S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+…+p2^k2) * (1+p3+ p3^3+…+p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

但是,使用这个公式不能用等比求和公式,因为我们要求余,等比数列求和公式求余就错了

所以用到了二分求等比数列和

用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:

(1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式中加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,在后面就说快速幂。

(2)若n为偶数,一共有奇数项,则:
      1 + p + p^2 + p^3 +...+ p^n

= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

上式加粗的前半部分恰好就是原式的一半,依然递归求解

前提是要用到<同余模公式>

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

还有<快速幂>

应该不难,看看代码能懂

 int Mi(int a, int b)//快速幂
{
int res = ;
a %= MOD;
while (b)
{
if (b%==)
res = (res * a)%MOD;
a = (a * a)%MOD;
b /= ;
}
return res;
}

好了,递归二分代码

 int Erfen(int p , int n)//求 1 + p + p^2 + p^3+ ... +p^n
{
if (n==) return ;
if (n%==)
return ((Mi(p,n/+)+) * Erfen(p,n/))%MOD;
else
return ((+Mi(p,n/+)) * Erfen(p,n/-) + Mi(p,n/))%MOD;
}

上总代码:

 #include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; #define MOD 9901 int a,b,z;
int p[]; //质数
int p_n[];//质数个数 void Zhi()
{
int t = a;
for (int i=;i*i<=a;i++)
{
if (t%i==)
{
p[z]=i;
p_n[z]=;
t/=i;
while (t%i==)
{
p_n[z]++;
t/=i;
}
z++;
}
if (t==) break;
if (i!=)
i++;//2.3.5.7.9...
}
if (t!=)//本身就是质数
{
p[z]=t;
p_n[z]=;
z++;
}
} int Mi(int a, int b)//快速幂
{
int res = ;
a %= MOD;
while (b)
{
if (b%==)
res = (res * a)%MOD;
a = (a * a)%MOD;
b /= ;
}
return res;
} int Erfen(int p , int n)//求 1 + p + p^2 + p^3+ ... +p^n
{
if (n==) return ;
if (n%==)
return ((Mi(p,n/+)+) * Erfen(p,n/))%MOD;
else
return ((+Mi(p,n/+)) * Erfen(p,n/-) + Mi(p,n/))%MOD;
} int main()
{
while (scanf("%d%d",&a,&b)!=EOF)
{
z=;//质数个数
Zhi(); int ans = ;
for (int i=;i<z;i++)
{
ans = (ans * Erfen(p[i],p_n[i]*b))%MOD;
}
printf("%d\n",ans);
}
return ;
}

Sumdiv(较难数学题)的更多相关文章

  1. SAT考试里最难的数学题? · 三只猫的温暖

    问题 今天无意中在Quora上看到有人贴出来一道号称是SAT里最难的一道数学题,一下子勾起了我的兴趣.于是拿起笔来写写画画,花了差不多十五分钟搞定.觉得有点意思,决定把解题过程记下来.原帖的图太小,我 ...

  2. CF 327D - Block Tower 数学题 DFS 初看很难,想通了就感觉很简单

    D. Block Tower time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. poj1845 Sumdiv

    poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...

  4. NEFU 117 - 素数个数的位数 - [简单数学题]

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=117 Time Limit:1000ms Memory Limi ...

  5. NYOJ 330 一个简单的数学题【数学题】

    /* 题目大意:求解1/n; 解题思路:写一个输出小数的算法 关键点:怎样处理小数点循环输出 解题人:lingnichong 解题时间:2014-10-18 09:04:22 解题体会:输出小数的算法 ...

  6. LG2662 牛场围栏 和 test20181107 数学题

    P2662 牛场围栏 题目背景 小L通过泥萌的帮助,成功解决了二叉树的修改问题,并因此写了一篇论文, 成功报送了叉院(羡慕不?).勤奋又勤思的他在研究生时期成功转系,考入了北京大学光华管理学院!毕业后 ...

  7. 微信群里一道六年级数学题,求阴影面积,那我只能用python代码了

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...

  8. C. Tourist Problem 2021.3.29 晚vj拉题 cf 1600 纯数学题

    拉题链接  https://vjudge.net/contest/430219#overview 原题链接  https://codeforces.com/problemset/problem/340 ...

  9. 看完SQL Server 2014 Q/A答疑集锦:想不升级都难!

    看完SQL Server 2014 Q/A答疑集锦:想不升级都难! 转载自:http://mp.weixin.qq.com/s/5rZCgnMKmJqeC7hbe4CZ_g 本期嘉宾为微软技术中心技术 ...

随机推荐

  1. wireshark问题现象分析

    讲的非常透彻:建议学习 wireshark问题现象分析1:参考博客1 https://blog.csdn.net/u012398362/article/details/52276067 wiresha ...

  2. iOS_block代码块

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcHJlX2VtaW5lbnQ=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  3. C++11之右值引用(三):使用C++11编写string类以及“异常安全”的=运算符

    前面两节,说明了右值引用和它的作用.下面通过一个string类的编写,来说明右值引用的使用. 相对于C++98,主要是多了移动构造函数和移动赋值运算符. 先给出一个简要的声明: class Strin ...

  4. jmap命令(Java Memory Map)的使用

    jmap的使用能够參考: 官方文档 http://docs.oracle.com/javase/6/docs/technotes/tools/share/jmap.html 和这篇博客 http:// ...

  5. 浏览器网页推断手机是否安装IOS/Androidclient程序

    IOS 原理例如以下: 为HTML页面中的超链接点击事件添加一个setTimeout方法. 假设在iPhone上面500ms内,本机有应用程序能解析这个协议并打开程序,则这个回调方法失效. 假设本机没 ...

  6. android推断手机是否root

    关于推断手机是否已经root的方法.假设app有一些特殊功能须要root权限,则须要推断是否root. 比方一些市场下载完app后自己主动安装. /** * @author Kevin Kowalew ...

  7. CentOS6.8 SVN服务器管理多项目

    一 需求 一般来说,公司有多个项目,在搭建好SVN服务器之后,就需要使用SVN来实现不在一个项目中的开发人员不能访问其它项目中的代码. 假设: 有3个项目:project1.project2.proj ...

  8. IDEA报compilation failed:internal java compiler error解决方法

    java complier 设置的问题  ,项目中有的配jdk1.6,有的配jdk1.7,版本不一样,导致这样的错误,提示这样的报错时,从file-Settings进入

  9. Android下的Handler

    coder是没必要重复造轮子的,写博客亦如此.因为工作忙,学的东西比较多,没法自己来写博客.自己想了个思路就是,把别人的技术精华拿过来,从简到难,慢慢学习.最后提炼,得到自己想学的东西即可,等有时间了 ...

  10. 【原创】分布式之数据库和缓存双写一致性方案解析(三) 前端面试送命题(二)-callback,promise,generator,async-await JS的进阶技巧 前端面试送命题(一)-JS三座大山 Nodejs的运行原理-科普篇 优化设计提高sql类数据库的性能 简单理解token机制

    [原创]分布式之数据库和缓存双写一致性方案解析(三)   正文 博主本来觉得,<分布式之数据库和缓存双写一致性方案解析>,一文已经十分清晰.然而这一两天,有人在微信上私聊我,觉得应该要采用 ...