位运算 之(1) 按位与(AND)& 操作
文章作者:ktyanny
由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快。
按位与(Bitwise AND),运算符号为&
a&b 的操作的结果:a、b中对应位同时为1,则对应结果位也为1、
例如:
1001000110100001111000
& 00000000
---------------------------------------------
00000000
对10101100000000进行右移8位得到的是101011,这就得到了a的8~15位的掩码了。那么根据这个启示,判断一个整数是否是处于 0-65535 之间(常用的越界判断):
用一般的 (a >= 0) && (a <= 65535) 可能要两次判断。
改用位运算只要一次:
a & ~((1 << 16)-1)
后面的常数是编译时就算好了的。其实只要算一次逻辑与就行了。
常用技巧:
1、 用于整数的奇偶性判断
一个整数a, a & 1 这个表达式可以用来判断a的奇偶性。二进制的末位为0表示偶数,最末位为1表示奇数。使用a%2来判断奇偶性和a & 1是一样的作用,但是a & 1要快好多。
的正整数冪
(!(n&(n-1)) ) && n
举个例子:
如果n = 16 = 10000, n-1 = 1111
那么:
10000
& 1111
----------
0
再举一个例子:如果n = 256 = 100000000, n-1 = 11111111
那么:
100000000
&11111111
--------------
0
好!看完上面的两个小例子,相信大家都有一个感性的认识。从理论上讲,如果一个数a他是2的正整数幂,那么a 的二进制形式必定为1000…..(后面有0个或者多个0),那么结论就很显然了。
的个数
朴素的统计办法是:先判断n的奇偶性,为奇数时计数器增加1,然后将n右移一位,重复上面步骤,直到移位完毕。
朴素的统计办法是比较简单的,那么我们来看看比较高级的办法。
举例说明,考虑2位整数 n=11,里边有2个1,先提取里边的偶数位10,奇数位01,把偶数位右移1位,然后与奇数位相加,因为每对奇偶位相加的和不会超过“两位”,所以结果中每两位保存着数n中1的个数;相应的如果n是四位整数 n=0111,先以“一位”为单位做奇偶位提取,然后偶数位移位(右移1位),相加;再以“两位”为单位做奇偶提取,偶数位移位(这时就需要移2位),相加,因为此时没对奇偶位的和不会超过“四位”,所以结果中保存着n中1的个数,依次类推可以得出更多位n的算法。整个思想类似分治法。
在这里就顺便说一下常用的二进制数:
0xAAAAAAAA=1010101010101010
0x55555555 = 101010101010101(奇数位为1,以1位为单位提取奇偶位)
0xCCCCCCCC = 0000000000000000
0x33333333 = 00000000000000(以“2位”为单位提取奇偶位)
0xF0F0F0F0 = 1111111111111111
0x0F0F0F0F = 000000000000(以“8位”为单位提取奇偶位)
0xFFFF0000 =0000000000000000
0x0000FFFF = (以“16位”为单位提取奇偶位)
例如:32位无符号数的1的个数可以这样数:
{
//0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位
n = ((n & ) + (n & 0x55555555);
//0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位
n = ((n & ) + (n & 0x33333333);
//0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位
n = ((n & ) + (n & 0x0F0F0F0F);
//0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位
n = ((n & ) + (n & 0x00FF00FF);
//0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位
n = ((n & ) + (n & 0x0000FFFF);
return n;
}
举个例子吧,比如说我的生日是农历2月11,就用211吧,转成二进制:
n = 11010011
计算n = ((n & 0xAAAAAAAA) >> 1) + (n & 0x55555555);
得到 n = 10010010
计算n = ((n & 0xCCCCCCCC) >> 2) + (n & 0x33333333);
得到 n = 00110010
计算n = ((n & 0xF0F0F0F0) >> 4) + (n & 0x0F0F0F0F);
得到 n = 00000101 -----------------à无法再分了,那么5就是答案了。
、对于正整数的模运算(注意,负数不能这么算)
先说下比较简单的:
乘除法是很消耗时间的,只要对数左移一位就是乘以2,右移一位就是除以2,传说用位运算效率提高了60%。
乘2^k 众所周知: n<<k。所以你以后还会傻傻地去敲2566*4的结果10264吗?直接2566<<4就搞定了,又快又准确。
除2^k众所周知: n>>k。
那么 mod 2^k 呢?(的倍数取模)
n&((1<<k)-1)
用通俗的言语来描述就是,对2的倍数取模,只要将数与2的倍数-1做按位与运算即可。
好!方便理解就举个例子吧。
思考:如果结果是要求模2^k时,我们真的需要每次都取模吗?
在此很容易让人想到快速幂取模法。
快速幂取模算法
经常做题目的时候会遇到要计算 a^b mod c 的情况,这时候,一个不小心就TLE了。那么如何解决这个问题呢?位运算来帮你吧。
首先介绍一下秦九韶算法:(数值分析讲得很清楚)
把一个n次多项式f(x) = a[n]x^n+a[n-1]x^(n-1)+......+a[1]x+a[0]改写成如下形式:
f(x) = a[n]x^n+a[n-1]x^(n-1))+......+a[1]x+a[0]
= (a[n]x^(n-1)+a[n-1]x^(n-2)+......+a[1])x+a[0]
= ((a[n]x^(n-2)+a[n-1]x^(n-3)+......+a[2])x+a[1])x+a[0]
=. .....
= (......((a[n]x+a[n-1])x+a[n-2])x+......+a[1])x+a[0].
求多项式的值时,首先计算最内层括号内一次多项式的值,即
v[1]=a[n]x+a[n-1]
然后由内向外逐层计算一次多项式的值,即
v[2]=v[1]x+a[n-2]
v[3]=v[2]x+a[n-3]
......
v[n]=v[n-1]x+a[0]
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值。
好!有了前面的基础知识,我们开始解决问题吧
由(a × b) mod c=( (a mod c) × b) mod c.
我们可以将 b先表示成就:
b = a[t] × 2^t + a[t-1]× 2^(t-1) + …… + a[0] × 2^0. (a[i]=[0,1]).
这样我们由 a^b mod c = (a^(a[t] × 2^t + a[t-1] × 2^(t-1) + …a[0] × 2^0) mod c.
然而我们求 a^( 2^(i+1) ) mod c=( (a^(2^i)) mod c)^2 mod c .求得。
具体实现如下:
使用秦九韶算法思想进行快速幂模算法,简洁漂亮
__int64 FastM(__int64 a, __int64 p, __int64 m)
{
) ;
__int64 r = a % m;
__int64 k = ;
)
{
)!=)
{
k = (k * r) % m;
}
r = (r * r) % m;
p >>= ;
}
return (r * k) % m;
}
http://acm.pku.edu.cn/JudgeOnline/problem?id=3070
、计算掩码
比如一个截取低6位的掩码:0×3F
用位运算这么表示:(1 << 6) - 1
这样也非常好读取掩码,因为掩码的位数直接体现在表达式里。
位运算 之(1) 按位与(AND)& 操作的更多相关文章
- Java位运算(移位,位与,或,异或,非)
1.左移( << ) // 0000 0000 0000 0000 0000 0000 0000 0101 然后左移2位后,低位补0:// // 0000 0000 0000 0000 0 ...
- 用位运算替代js中的常见操作
一.补码 所谓补码就是所有位取反: 例如3的二进制表示是:00000011,那么3的补码就是11111100: 对于-3的二进制表示就是3的补码+1:11111101: 所以二进制的负数就是该数的补码 ...
- 位运算之——按位与(&)操作——(快速取模算法)
学习redis 字典结构,hash找槽位 求槽位的索引值时,用到了 hash值 & sizemask操作, 其后的scan操作涉及扫描顺序逻辑,对同模的槽位 按一定规则扫描! 其中涉及位运算 ...
- 【Java基础】14、位运算之——按位与(&)操作——(快速取模算法)
学习redis 字典结构,hash找槽位 求槽位的索引值时,用到了 hash值 & sizemask操作, 其后的scan操作涉及扫描顺序逻辑,对同模的槽位 按一定规则扫描! 其中涉及位运算 ...
- java中位运算
1byte(字节)=8bit(比特) 1 0 0 0 0 0 0 0 1 2进制的1的原码 反码 补码 0 0 0 0 0 0 0 0 2进制的0的原码 反码 补码 -1 1 0 0 0 0 ...
- <转>C++位运算详解
原文转自:http://www.crazycpp.com/?p=82 前言 以前收藏过一篇讲C++位操作的文章,这次博客搬家,以前的数据都没有保留,整理谷歌网站管理后台的时候,发现不时的还有网友有在查 ...
- C入门---位运算
程序中的所有数在计算机内存中都是以二进制的形式储存的.位运算直接对整数在内存中的二进制位进行操作.由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快. (1),与(&)运算 ...
- Java位运算总结:位运算用途广泛《转》
前天几天研究了下JDK的Collection接口,本来准备接着研究Map接口,可是一查看HashMap类源码傻眼咯,到处是位运算实现,所以我觉得还是有必要先补补位运算知识,不然代码看起来有点费力.今天 ...
- C++基础-位运算
昨天笔试遇到一道题,让实现乘法的计算方法,设计方案并优化,后来总结位运算相关知识如下: 在计算机中,数据是以1010的二进制形式存储的,1bytes = 8 bits,bit就是位,所以位运算就是对每 ...
随机推荐
- 6_State 游戏开发中使用状态机
### State 不好的代码 ``` //处理玩家输入的代码 void Heroine::handleInput(Input input) { if (input == PRESS_B) { if ...
- django学习笔记(一)视图和url配置
1.开始一个项目: 进入创建的目录,然后: django-admin startproject myblog 2.启动开发服务器: python manage.py runserver 注:默认是80 ...
- Android: 一个两点触控的案例
下面是一个两点触控的案例代码: package com.zzj; import android.app.Activity; import android.os.Bundle; import andro ...
- HTML5视音频标签参考
本文将介绍HTML5中的视音频标签和对应的DOM对象.是相关资料的中文化版本,可以作为编写相关应用的简易中文参考手册. 一些约定 所有浏览器:指支持HTML5的常见桌面浏览器,包括IE9+.Firef ...
- webpack打包APP的后端地址处理
PC端我们用webpack打包,只需要写相对路径,发布的时候和后端接口在同一目录下即可. 但是做过APP或者混合开发的同学都知道,APP不需要发布的,如果后端地址还是用相对路径的话,可想而知,调用后端 ...
- TFS自定义开发中的反射应用
最近CM(Configuration Management) 的同事在自定义开发TFS的过程中遇到一个问题. 领导要求快速开发一个工具, 可以自动连接TFS,然后自动Check out一些word文件 ...
- 如何利用pyenv 和virtualenv 在单机上搭建多版本python 虚拟开发环境
pyenv 和virtualenv分别是干什么的? pyenv帮助你在一台机上建立多个版本的python环境, 并提供方便的切换方法. virtualenv则就是将一个目录建立为一个虚拟的python ...
- flume 配置与使用
1.下载flume,解压到自建文件夹 2.修改flume-env.sh文件 在文件中添加JAVA_HOME 3.修改flume.conf 文件(原名好像不叫这个,我自己把模板名改了) 里面我自己配的( ...
- web攻击之三:SQL注入攻击的种类和防范手段
观察近来的一些安全事件及其后果,安全专家们已经得到一个结论,这些威胁主要是通过SQL注入造成的.虽然前面有许多文章讨论了SQL注入,但今天所讨论的内容也许可帮助你检查自己的服务器,并采取相应防范措施. ...
- 百度之星 hdu5701 中位数计数
http://acm.hdu.edu.cn/showproblem.php?pid=5701 给出一个序列,取其中的任何一个连续的序列,该序列的数从小到大排列,待更新,,, #include<i ...