转自别人的博客。这里记录一下

这题是定义如下的一个数:

S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0;

S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.

也就是题中所说的把一个含有n个元素的集合分成m份,共有多少种分法。

现在题目就是要求S(n, m)的奇偶性。

如果m是一个偶数的话,那么我们可以推出 S(n, m) Ξ S(n-1, m-1) (mod 2),如果m是一个奇数的话,我们推出S(n, m) Ξ (S(n-1, m) + S(n-1, m-1)) (mod 2)。后面看到某一大牛所说的利用画图来推导这个表达式,整了一下,S(n, m)这个状态可由左边的S(n-1, m) 以及 斜下方的 S(n-2, m-2)得到。最后得到结果是c( n-m, n-m+(m-1)/2 ).

最后只要确定一个组合数是否为奇数即可,c(A, B) = B! / (A! * (B-A)!) 我们通过提取上下阶乘的2的个数即可,因为这个式子一定能够约分成整数,那么只要2这个因子没有就一定是一个奇数了。

代码:

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std; int main()
{
int T, n, m, t1, t2;
scanf("%d", &T);
while (T--) {
t1 = t2 = ;
scanf("%d %d", &n, &m);
if (m == && n) {
puts("");
continue;
}
n -= m;
m = n + (m-)/; // n此处就是n-m了
int A = n, B = m, C = (B-A);
while (B) {
t1 += B/;
B /= ;
}
while (A) {
t2 += A/;
A /= ;
}
while (C) {
t2 += C/;
C /= ;
}
if (t1 == t2) {
puts("");
}
else {
puts("");
}
}
return ;
}

UVALIVE 2431 Binary Stirling Numbers的更多相关文章

  1. poj 1430 Binary Stirling Numbers

    Binary Stirling Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1761   Accepted ...

  2. POJ1430 Binary Stirling Numbers

    @(POJ)[Stirling數, 排列組合, 數形結合] Description The Stirling number of the second kind S(n, m) stands for ...

  3. POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)

    题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...

  4. 【poj1430】Binary Stirling Numbers(斯特林数+组合数)

    传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...

  5. Binary Stirling Numbers

    http://poj.org/problem?id=1430 题目: 求 第二类 斯特林数 的 奇偶性  即 求 s2 ( n , m ) % 2 : 题解: https://blog.csdn.ne ...

  6. UVALive - 6577 Binary Tree 递推+找规律

    题目链接: http://acm.hust.edu.cn/vjudge/problem/48421 Binary Tree Time Limit: 3000MS 问题描述 Binary Tree is ...

  7. UVALive 6577 Binary Tree 二叉树的LRU串

    今天继续攒人品...真开心啊O(∩_∩)O~~各种身体不舒服~~ https://icpcarchive.ecs.baylor.edu/external/65/6577.pdf 题意是这样的,现在有一 ...

  8. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  9. acm数学(转)

    这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...

随机推荐

  1. 边缘检测 opencv

    本次实验使用了两种方法进行了边缘检测,分别使用到了opencv中的两个API函数为Canny()和Sobel()函数.实验后加了Scharr滤波器,它其实是基于Sobel()函数的. 这三个API中的 ...

  2. HyperLedger Fabric ca 1.2 正式环境部署

    生成一个根CA(RootCA),在根CA下3个中间CA(IntermediaCA). 1. 运行和配置RootCA服务#cd /opt/gopath/src/github.com/hyperledge ...

  3. http与www服务精解

    TCP/IP 协议介绍 在介绍 HTTP 协议之前,先简单说一下TCP/IP协议的相关内容.TCP/IP协议是分层的,从底层至应用层分别为:物理层.链路层.网络层.传输层和应用层,如下图所示: 从应用 ...

  4. Android 中的一些特殊目录与文件

    用作命令的二进制文件位于/system/bin/与/system/xbin/下 应用数据位于/data/data/, 原始安装文件位于/data/app/(Play商店中非免费应用位于/data/ap ...

  5. linux命令随身记

    赋予权限命令:chmod 755 * 查询进程: ps -ef |grep abc 查看含有"abc"的活动进程 ps -ef |grep -v abc 查看不含abc的活动进程 ...

  6. python time时间模块

    在Python中,通常有这三种方式来表示时间:时间戳.元组(struct_time).格式化的时间字符串 (1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00: ...

  7. 16,docker入门

      在学一门新知识的时候,超哥喜欢提问,why?what?how? wiki资料 什么是docker Docker 最初是 dotCloud 公司创始人 Solomon Hykes 在法国期间发起的一 ...

  8. css3心形 perspective transform

    CSS3挺有趣的,能实现不少动画,以下为娱乐内容 <!DOCTYPE html> <html> <head> <meta charset="UTF- ...

  9. python语法root=Tkinter.Tk()

    1. Tkinter 是一个python模块,是一个调用Tcl/Tk的接口,它是一个跨平台的脚本图形界面接口.Tkinter不是唯一的python图形编程接口,但是是 其中比较流行的一个.最大的特点是 ...

  10. 阿里云ECS Ubuntu安装PHP+Mysql+Apache+Nginx+Redis+Discuz

    http://www.linuxdiyf.com/linux/13662.html http://blog.csdn.net/wangnan537/article/details/47868659 h ...