【BZOJ3209】花神的数论题(数位DP)
大致题意: 设\(sum(i)\)表示\(i\)二进制中1的个数,请求出\(\prod_{i=1}^n sum(i)\)。
数位\(DP\)
很显然,这是一道数位\(DP\)题。我们可以先将\(n\)转化为二进制,然后DP预处理,最后求答案。
设\(f[i][j]\)表示当前数字的1~\(i\)位中共有\(j\)个1,这可以得到转移方程:
f[i][j]=f[i-1][j]+f[i-1][j-1];
初始时将全部\(f[i][0]\)赋值为1。
然后我们就能发现,这样子我们就相当于求出了一个杨辉三角形。
最后,再对\(sum(i)\)的每一种可能值依次进行操作,求出有多少个数在二进制下有\(i\)个1,再用快速幂将其累乘即可求出答案。
代码
#include<bits/stdc++.h>
#define LL long long
#define YKH 10000007
using namespace std;
LL n,ans=1ll,tot,num[100],f[100][100];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(LL &x)
{
x=0;LL f=1;char ch;
while(!isdigit(ch=tc())) f=ch^'-'?1:-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline LL quick_pow(LL x,LL y)//快速幂
{
LL res=1;
while(y)
{
if(y&1) (res*=x)%=YKH;
(x*=x)%=YKH,y>>=1;
}
return res;
}
inline LL doing(LL x)//求出二进制下含有i个1的数的个数,利用了先前求出的杨辉三角形
{
LL sum=0;//统计个数
for(register LL i=tot;i>0;--i)
{
if(num[i]) sum+=f[i-1][x--];//判断该位是否为1
if(x<0) return sum;//如果x小于0,返回sum
}
return sum;
}
int main()
{
register LL i,j;LL w;
for(read(n),w=n+1,tot=0;w;num[++tot]=w&1,w>>=1);
for(i=0;i<=tot;++i) f[i][0]=1;
for(i=1;i<=tot;++i)//预处理出一个杨辉三角形
for(j=1;j<=i;++j)
f[i][j]=f[i-1][j]+f[i-1][j-1];
for(i=1;i<=tot;++i)
(ans*=quick_pow(i,doing(i)))%=YKH;//求出答案,并累乘
return write(ans),0;
}
【BZOJ3209】花神的数论题(数位DP)的更多相关文章
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
- 花神的数论题(数位dp)
规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
随机推荐
- ABC118D(DP,完全背包,贪心)
#include<bits/stdc++.h>using namespace std;int cnt[10]={0,2,5,5,4,5,6,3,7,6};int dp[10007];int ...
- CF 983B XOR-pyramid(区间dp,异或)
CF 983B XOR-pyramid(区间dp,异或) 若有一个长度为m的数组b,定义函数f为: \(f(b) = \begin{cases} b[1] & \quad \text{if } ...
- 水库(树形dp)
水库 (树形dp) R国有n座城市和n-1条长度为1的双向道路,每条双向道路连接两座城市,城市之间均相互连通.现在你需要维护R国的供水系统.你可以在一些城市修建水库,在第i个城市修建水库需要每年c_i ...
- 前端页面使用ace插件优化脚本
html页面:<pre id="editor" style="width: 100%;height: 800px;"></pre>(注: ...
- spring boot test MockBean
使用spring boot , MockBean @RunWith(SpringRunner.class) @SpringBootTest(classes = Application.class) p ...
- 02.Spring Ioc 容器 - 创建
基本概念 Spring IoC 容器负责 Bean 创建.以及其生命周期的管理等.想要使用 IoC容器的前提是创建该容器. 创建 Spring IoC 容器大致有两种: 在应用程序中创建. 在 WEB ...
- FZU Problem 2244 Daxia want to buy house
模拟题,注意: 1.那两个贷款都是向银行贷的,就是两个贷款的总额不能超过70%,就算公积金贷款能贷也不行,我开始的时候以为公积金贷款是向公司借的,,欺负我这些小白嘛.... 2.最坑的地方 *0.7是 ...
- C++学习 - 虚表,虚函数,虚函数表指针学习笔记
http://blog.csdn.net/alps1992/article/details/45052403 虚函数 虚函数就是用virtual来修饰的函数.虚函数是实现C++多态的基础. 虚表 每个 ...
- UiAutomator快速调试
步骤: 1.打开浏览器,输入网址https://github.com,搜索uiautomatorhelper 2. 3 . 4.打开eclipse,File-&g ...
- arch安装软件提示包损坏
错误:lib32-libjpeg6-turbo: signature from "Colin Keenan <colinnkeenan@gmail.com>" is u ...