1. 首先启动zookeeper

windows上的安装见zk 02之 Windows安装和使用zookeeper

启动后见:

2. 启动kafka

windows的安装kafka见Windows上搭建Kafka运行环境,启动后如下图:

3. 核心代码

生产者生产消息的java代码,生成要统计的单词

package com.sf.omcstest;

import java.util.Properties; 

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig; public class MyProducer { public static void main(String[] args) {
Properties props = new Properties();
props.setProperty("metadata.broker.list","localhost:9092");
props.setProperty("serializer.class","kafka.serializer.StringEncoder");
props.put("request.required.acks","1");
ProducerConfig config = new ProducerConfig(props);
//创建生产这对象
Producer<String, String> producer = new Producer<String, String>(config);
//生成消息
KeyedMessage<String, String> data1 = new KeyedMessage<String, String>("top1","test kafka");
KeyedMessage<String, String> data2 = new KeyedMessage<String, String>("top2","hello world");
try {
int i =1;
while(i < 1000){
//发送消息
producer.send(data1);
producer.send(data2);
System.out.println("put in kafka " + i);
i++;
Thread.sleep(1000);
}
} catch (Exception e) {
e.printStackTrace();
}
producer.close();
}
}

在SparkStreaming中接收指定话题的数据,对单词进行统计

package com.sf;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.regex.Pattern; import org.apache.spark.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.*;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils; import scala.Tuple2; import com.google.common.collect.Lists;
public class KafkaStreamingWordCount { public static void main(String[] args) throws InterruptedException {
//设置匹配模式,以空格分隔
final Pattern SPACE = Pattern.compile(" ");
//接收数据的地址和端口
String zkQuorum = "localhost:2181";
//话题所在的组
String group = "1";
//话题名称以“,”分隔
String topics = "top1,top2";
//每个话题的分片数
int numThreads = 2; //Spark Streaming程序以StreamingContext为起点,其内部维持了一个SparkContext的实例。
// 这里我们创建一个带有两个本地线程(local[2])的StreamingContext,并设置批处理间隔为1秒
SparkConf sparkConf = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]");
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(10000)); // 在一个Spark应用中默认只允许有一个SparkContext,默认地spark-shell已经为我们创建好了
// SparkContext,名为sc。因此在spark-shell中应该以下述方式创建StreamingContext,以
// 避免创建再次创建SparkContext而引起错误:
// val ssc = new StreamingContext(sc, Seconds(1)) //jssc.checkpoint("checkpoint"); //设置检查点
//存放话题跟分片的映射关系
Map<String, Integer> topicmap = new HashMap<>();
String[] topicsArr = topics.split(",");
int n = topicsArr.length;
for(int i=0;i<n;i++){
topicmap.put(topicsArr[i], numThreads);
}
//从Kafka中获取数据转换成RDD
JavaPairReceiverInputDStream<String, String> lines = KafkaUtils.createStream(jssc, zkQuorum, group, topicmap);
//从话题中过滤所需数据
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<Tuple2<String, String>, String>() { @Override
public Iterator<String> call(Tuple2<String, String> arg0)
throws Exception {
return Lists.newArrayList(SPACE.split(arg0._2)).iterator();
}
});
//对其中的单词进行统计
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
//打印结果
wordCounts.print(); // 执行完上面代码,Spark Streaming并没有真正开始处理数据,而只是记录需在数据上执行的操作。
// 当我们设置好所有需要在数据上执行的操作以后,我们就可以开始真正地处理数据了。如下:
jssc.start(); // 开始计算
jssc.awaitTermination(); // 等待计算终止 } }

结果:

017-01-18 18:32:27,800 WARN  org.apache.spark.storage.BlockManager.logWarning(Logging.scala:66) - Block input-0-1484735547600 replicated to only 0 peer(s) instead of 1 peers
2017-01-18 18:32:28,801 WARN org.apache.spark.storage.BlockManager.logWarning(Logging.scala:66) - Block input-0-1484735548600 replicated to only 0 peer(s) instead of 1 peers
2017-01-18 18:32:29,801 WARN org.apache.spark.storage.BlockManager.logWarning(Logging.scala:66) - Block input-0-1484735549600 replicated to only 0 peer(s) instead of 1 peers
-------------------------------------------
Time: 1484735550000 ms
-------------------------------------------
(hello,10)
(kafka,10)
(test,10)
(world,10)

master URL

配置conf/spark-env.sh 是配置spark的standalone环境,类似于hadoop配置hdfs环境一样。但是部署程序时仍然需要指定master的位置。
如果选择的部署模式是standalone且部署到你配置的这个集群上,可以指定 MASTER=spark://ubuntu:7070

下面解答spark在那里指定master URL的问题:
1.通过spark shell,执行后进入交互界面
MASTER=spark://IP:PORT ./bin/spark-shell

2.程序内指定(可以通过参数传入)

val conf = new SparkConf()
.setMaster(...)
val sc = new SparkContext(conf)

传递给spark的master url可以有如下几种:

local 本地单线程
local[K] 本地多线程(指定K个内核)
local[*] 本地多线程(指定所有可用内核)
spark://HOST:PORT 连接到指定的 Spark standalone cluster master,需要指定端口。
mesos://HOST:PORT 连接到指定的 Mesos 集群,需要指定端口。
yarn-client客户端模式 连接到 YARN 集群。需要配置 HADOOP_CONF_DIR。
yarn-cluster集群模式 连接到 YARN 集群 。需要配置 HADOOP_CONF_DIR。

spark1.0起的版本在提交程序到集群有很大的不同,需要注意:

./bin/spark-submit \
--class <main-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
... # other options
<application-jar> \
[application-arguments]

例如:

# Run application locally on 8 cores
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[] \
/path/to/examples.jar \
100 # Run on a Spark standalone cluster
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://207.184.161.138:7077 \
--executor-memory 20G \
--total-executor-cores 100 \
/path/to/examples.jar \
1000 # Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn-cluster \ # can also be `yarn-client` for client mode
--executor-memory 20G \
--num-executors 50 \
/path/to/examples.jar \
1000 # Run a Python application on a cluster
./bin/spark-submit \
--master spark://207.184.161.138:7077 \
examples/src/main/python/pi.py \
1000

更多关于spark-submit见《spark提交模式

demo1 spark streaming 接收 kafka 数据java代码WordCount示例的更多相关文章

  1. spark streaming 接收 kafka 数据java代码WordCount示例

    http://www.cnblogs.com/gaopeng527/p/4959633.html

  2. Spark Streaming接收Kafka数据存储到Hbase

    Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712 ...

  3. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十二)Spark Streaming接收流数据及使用窗口函数

    官网文档:<http://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example> Sp ...

  4. spark streaming 接收kafka消息之四 -- 运行在 worker 上的 receiver

    使用分布式receiver来获取数据使用 WAL 来实现 exactly-once 操作: conf.set("spark.streaming.receiver.writeAheadLog. ...

  5. spark streaming 接收kafka消息之五 -- spark streaming 和 kafka 的对接总结

    Spark streaming 和kafka 处理确保消息不丢失的总结 接入kafka 我们前面的1到4 都在说 spark streaming 接入 kafka 消息的事情.讲了两种接入方式,以及s ...

  6. spark streaming 接收kafka消息之二 -- 运行在driver端的receiver

    先从源码来深入理解一下 DirectKafkaInputDStream 的将 kafka 作为输入流时,如何确保 exactly-once 语义. val stream: InputDStream[( ...

  7. spark streaming 接收kafka消息之一 -- 两种接收方式

    源码分析的spark版本是1.6. 首先,先看一下 org.apache.spark.streaming.dstream.InputDStream 的 类说明: This is the abstrac ...

  8. Spark Streaming与kafka整合实践之WordCount

    本次实践使用kafka console作为消息的生产者,Spark Streaming作为消息的消费者,具体实践代码如下 首先启动kafka server .\bin\windows\kafka-se ...

  9. spark streaming 接收kafka消息之三 -- kafka broker 如何处理 fetch 请求

    首先看一下 KafkaServer 这个类的声明: Represents the lifecycle of a single Kafka broker. Handles all functionali ...

随机推荐

  1. 【P1369】矩形(贪心)

    蒟蒻现在连DP都做不出来了,就只能做一些XJB贪心题,这个题题目向非常友好,100的数据范围一看就是让你跑O(n^4)的做法的,然而实际上并不是那么多,大约是,额,反正要快不少. 没什么好说的,直接枚 ...

  2. CF697E && CF696C PLEASE

    题意:给你三个杯子,一开始钥匙放在中间的杯子里,然后每一回合等概率将左右两个杯子中的一个与中间杯子交换.求n回合之后钥匙在中间杯子的概率.这里要求概率以分数形式输出,先化成最简,然后对1e9 + 7取 ...

  3. Caused by: org.apache.ibatis.reflection.ReflectionException: There is no getter for property named 'company' in 'class java.lang.String'

    Caused by: org.apache.ibatis.reflection.ReflectionException: There is no getter for property named ' ...

  4. odl v2 driver

    networking-odl项目的目的/用途就是sync odl和neutron的资源数据库和状态 v1中对于每个neutron的资源操作都相应的调用odl restfu api来同步odl,但问题有 ...

  5. iOS音频掌柜-- AVAudioSession

    音频输出作为硬件资源,对于iOS系统来说是唯一的,那么要如何协调和各个App之间对这个稀缺的硬件持有关系呢? iOS给出的解决方案是"AVAudioSession" ,通过它可以实 ...

  6. 51nod 1732 LCS变形

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1732 1732 51nod婚姻介绍所 题目来源: 原创 基准时间限制:1 ...

  7. Amazon EMR(Elastic MapReduce):亚马逊Hadoop托管服务运行架构&Hadoop云服务之战:微软vs.亚马逊

    http://s3tools.org/s3cmd Amazon Elastic MapReduce (Amazon EMR)简介 Amazon Elastic MapReduce (Amazon EM ...

  8. 强大的表格控件handsometable,结合vue

    handsontable handsontable是目前在前端界最接近excel的插件,可以执行编辑,复制粘贴,插入删除行列,排序等复杂操作.jQuery.react.ng和vue版本,功能强大,是复 ...

  9. python3.x学习笔记2018-02-05更新

    前言:python3.x部分学习笔记,有意交流学习者可加wechat:YWNlODAyMzU5MTEzMTQ=.如果笔记内容有错,请指出来. 对数据类型的操作 可变数据类型:列表,集合,字典 列表: ...

  10. sass语法(1)

    文件后缀名 sass有两种后缀名文件:一种后缀名为sass,不使用大括号和分号:另一种就是我们这里使用的scss文件,这种和我们平时写的css文件格式差不多,使用大括号和分号 //文件后缀名为sass ...