bzoj2301

题意

求区间 [a, b] 和 区间 [c, d] 有多少对数 (x, y) 使得 gcd(x, y) = k 。

分析

参考ppt

参考blog

考虑用容斥分成四次查询,

对于每次查询区间 [1, n] [1, m] 有多少对数使得 gcd = k ,等价于 [1, m / k] [1, n / k] 使得 gcd = 1。

考虑函数 F(k) = (n / k) * (m / k) 表示区间 [1, n] [1, m] 使得 gcd(x, y) 为 k 的倍数的个数。

函数 f(k) 表示区间 [1, n] [1, m] 使得 gcd(x, y) 为 k 的个数。

$ F(d) = \sum_{k\mid d}f(k) => f(k) = \sum_{k\mid d}\mu(\frac d k)F(d) $

f(1) 即为答案。

算法还需要优化,考虑 n / k 这个函数,当 k 越大变化越趋于平缓,也就是说一个整数值会对应一个连续的 k 值区间,对于这些相同的值可以预处理 \(\mu\) 函数前缀和,对于 n 和 m 存在公共连续区间的部分 F 函数值不变,直接全部加上即可。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e6 + 10;
int not_prime[MAXN];
int prime[MAXN];
int mu[MAXN];
void getMu() {
mu[1] = 1;
int cnt = 0;
for(int i = 2; i < MAXN; i++) {
if(!not_prime[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; i * prime[j] < MAXN; j++) {
not_prime[i * prime[j]] = 1;
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for(int i = 1; i < MAXN; i++) mu[i] += mu[i - 1]; // 前缀和
}
ll cal(int m, int n, int k) {
int last;
m /= k; n /= k;
ll s = 0;
for(int i = 1; i <= min(n, m); i = last + 1) {
last = min(n / (n / i), m / (m / i));
s += (ll)(mu[last] - mu[i - 1]) * (m / i) * (n / i);
}
return s;
}
int main() {
getMu();
int T;
scanf("%d", &T);
while(T--) {
int a, b, c, d, k;
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
printf("%d\n", cal(b, d, k) - cal(a - 1, d, k) - cal(b, c - 1, k) + cal(a - 1, c - 1, k));
}
return 0;
}

bzoj2301(莫比乌斯反演)的更多相关文章

  1. BZOJ2301 莫比乌斯反演

    题意:a<=x<=b,c<=y<=d,求满足gcd(x,y)=k的数对(x,y)的数量         ((x,y)和(y,x)不算同一个) 比hdu1695多加了个下界,还有 ...

  2. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  3. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  4. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  5. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  6. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  7. bzoj2301(莫比乌斯反演+分块)

    传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y ...

  8. [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

    题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...

  9. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

  10. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

随机推荐

  1. Mac 电脑鼠标和触摸板滚动方向不一致的问题【已解决】

    当我们使用鼠标连接到 MacBook 时,会发现无论怎么设置,鼠标和触摸板的滚动方向都是相反的,导致不能同时使用鼠标和触摸板 解决方法: 我安装了下面的程序,它只允许您反转鼠标的滚动行为: Scrol ...

  2. [OpenCV] Ptr类模板

    1.C++泛型句柄类 我们知道在包含指针成员的类中,需要特别注意类的复制控制,因为复制指针时只复制指针中的地址,而不会复制指针指向的对象.这将导致当两个指针同时指向同一对象时,很可能一个指针删除了一对 ...

  3. springboot13 Hikari 和Introspector

    SpringBoot Initializr Introspector(内省) class TestReflect { @Test fun testReflect() { //获取字节码对象 val c ...

  4. vmware中三种网络连接方式(复制)

    原文来自http://note.youdao.com/share/web/file.html?id=236896997b6ffbaa8e0d92eacd13abbf&type=note 我怕链 ...

  5. Centos安装后的一些必要处理工作

    1永久关闭selinux,修改成permissive或者disabled(建议),修改完需重启 2配置network 3.禁止ping(可选,一般不需要禁止)(默认为0位启用ICMP协议,1为禁止), ...

  6. MySQL常用客户端 命令

    登录MySQL mysql -h localhost -uroot -p 授权指定用户访问指定数据库 GRANT ALL ON cookbook.* TO 'cbuser'@'localhost' I ...

  7. 【bzoj4146】[AMPPZ2014]Divisors 数论

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801411.html 题目描述 给定一个序列a[1],a[2],...,a[n].求满足i!=j且a[i]|a[j] ...

  8. 【Luogu】P3760异或和(权值树状数组)

    题目链接 再次声明以后我见到位运算一定第一时间想把它拆成每一位算 本题就是有个前缀和sum[],然后让你求每一位有多少对i,j满足sum[i]-sum[j]在那一位上是1 考虑怎样才能减出1来 如果s ...

  9. [poj] 2549 Sumsets || 双向bfs

    原题 在集合里找到a+b+c=d的最大的d. 显然枚举a,b,c不行,所以将式子移项为a+b=d-c,然后双向bfs,meet int the middle. #include<cstdio&g ...

  10. Codeforces 835 F Roads in the Kingdom(树形dp)

    F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...