CF451E Devu and Flowers(容斥)

题目大意

\(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案。不一定每种花都要选到。

\(n\le 20\)

解法

利用可重组合的公式。

不考虑\(f_i\)的限制,直接可重组合的方案是,意思是从可以重复的\(n\)个元素中取出\(r\)个的个数。注意,根据定义,此时\(r\)种每个都要选。

\[f(s,r)={s+r-1 \choose r-1}
\]

考虑限制怎么办,我们先容斥。

我们可以钦定某些花选择了\(f_i+1\)次,代表这个花选出不合法的了。

那么为什么不是钦定\(f_i+0,2 \dots233666\dots \infin\) 呢?

是因为,我们钦定这种花选择了\(f_i+1\)后,就保证这种花超过限制了。

此时可重组合的公式仍然可以选择\(i\)号花,所以考虑到了\(i\)号花选择了\(\ge f_i+1\)的情况。

所以我们钦定\(f_i+1\)朵花就好了。

根据容斥原理,所有花不超过限制的方案数为

\[\Sigma_{t\subseteq S} (-1)^{|t|}f(s-\Sigma_{x\in t}(x_i+1)+r-1,r-1)
\]

//@winlere
#include<bits/stdc++.h>
#define int long long
using namespace std; typedef long long ll;
template < class ccf > inline ccf qr(ccf ret){ ret=0;
register char c=getchar();
while(not isdigit(c)) c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return ret;
}inline int qr(){return qr(1);}
const int maxn=25;
const ll mod=1e9+7;
inline ll Pow(ll base,ll p){
base%=mod;
register ll ret=1;
for(;p;p>>=1,base=base*base%mod)
if(p&1) ret=ret*base%mod;
return ret;
}
ll data[maxn],s,ans,inv[maxn]={1},jie[maxn]={1};
int n; inline ll C(const ll&n,const ll&m){
if(n<m||m<0||n<0)return 0;
if(n==m)return 1;
register ll ret=inv[m];
for(register ll t=n;t>=n-m+1ll;--t)
ret=t%mod*ret%mod;
return ret;
}
#undef int
int main(){
#define int long long
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
#endif
for(register int t=1;t<maxn;++t)
inv[t]=inv[t-1]*Pow(t,mod-2ll)%mod;
n=qr();s=qr(1ll);ans=C(s+n-1ll,n-1ll);
for(register int t=1;t<=n;++t)
data[t]=qr(1ll);
for(register int t=1,edd=1<<n,cnt=0;t<edd;++t){
ll f=cnt=0,delt;
for(register int i=1;i<=n;++i)
if(t<<1>>i&1)
f+=data[i]+1ll,++cnt;
delt=C(s-f+n-1ll,n-1ll);
if(cnt&1) ans=(ans-delt)%mod,ans=ans<0?ans+mod:ans;
else ans=(ans+delt)%mod;
}
cout<<ans<<endl;
return 0;
}

CF451E Devu and Flowers(容斥)的更多相关文章

  1. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

  2. CodeForces - 451E Devu and Flowers (容斥+卢卡斯)

    题意:有N个盒子,每个盒子里有fi 朵花,求从这N个盒子中取s朵花的方案数.两种方法不同当且仅当两种方案里至少有一个盒子取出的花的数目不同. 分析:对 有k个盒子取出的数目超过了其中的花朵数,那么此时 ...

  3. CF451E Devu and Flowers 解题报告

    CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...

  4. CF451E Devu and Flowers (组合数学+容斥)

    题目大意:给你$n$个箱子,每个箱子里有$a_{i}$个花,你最多取$s$个花,求所有取花的方案,$n<=20$,$s<=1e14$,$a_{i}<=1e12$ 容斥入门题目 把取花 ...

  5. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  6. CF451E Devu and Flowers

    多重集求组合数,注意到\(n = 20\)所以可以用\(2 ^ n * n\)的容斥来写. 如果没有限制那么答案就是\(C(n + s - 1, n - 1)\).对每一个限制依次考虑,加上有一种选多 ...

  7. CF451E Devu and Flowers 数论

    正解:容斥+Lucas定理+组合数学 解题报告: 传送门! 先mk个我不会的母函数的做法,,, 首先这个题的母函数是不难想到的,,,就$\left (  1+x_{1}^{1}+x_{1}^{2}+. ...

  8. BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers

    Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...

  9. CF451E Devu and Flowers(组合数)

    题目描述 Devu想用花去装饰他的花园,他已经购买了n个箱子,第i个箱子有fi朵花,在同一个的箱子里的所有花是同种颜色的(所以它们没有任何其他特征).另外,不存在两个箱子中的花是相同颜色的. 现在De ...

随机推荐

  1. PS PNG导出的时候是否交错有什么影响

    已解决 导出png格式交错什么意思 我百度的答案一律说png支持交错,可是交错两个字的意思是什么啊,那位专家请指教.谢谢啦!! 问题补充: 我用photoshop或者coreldraw制作按钮时候不是 ...

  2. S5:桥接模式 Bridge

    将抽象的部分与实现的部分分离,使它们都可以独立变化.抽象与实现的分离,指的是抽象类和派生类用来实现自己的对象.实现系统可能有多角度分类,每一种分类都有可能变化,那么就把这种多角度分离出来,让他们独立变 ...

  3. 网络编程readn、writen和readline函数的编写

    readn   在Linux中,read的声明为: ssize_t read(int fd, void *buf, size_t count); 它的返回值有以下情形: 1.大于0,代表成功读取的字节 ...

  4. ylb:使用sql语句实现添加、删除约束

    ylbtech-SQL Server:SQL Server-使用sql语句实现添加.删除约束 --主键约束(Primary Key constraint):要求主键列的数据唯一,并且不允许为空. -- ...

  5. 闪屏(Splash)

    好久没弄ReactNative了, 写个怎样实现闪屏(Splash)的文章吧. 注意: (1) 怎样切换页面. (2) 怎样使用计时器TimerMixin. (3) 怎样使用动画效果. (4) 怎样载 ...

  6. linux下yum安装maven

    Maven 官网:http://maven.apache.org/ 源码安装 http://mirrors.hust.edu.cn/apache/maven/maven-3/3.3.9/binarie ...

  7. Httpclient 实现带参文件上传

    这里直接贴出的是我封装好的doPostFile方法,httpclient 的版本是3.1. public static String doPostFile(String url, Part[] par ...

  8. java多线程编码注意事项

    Sole purpose of using concurrency is to produce scalable and faster program. But always remember, sp ...

  9. IOS设置图片背景

    在UIViewController里面这样设置: self.view.backgroundColor = [UIColor colorWithPatternImage: [UIImage imageN ...

  10. nginx 常见参数以及重定向参数配置

    nginx 各参数翻译,作用 $arg_PARAMETER #这个变量包含GET请求中,如果有变量PARAMETER时的值. $args #这个变量等于请求行中(GET请求)的参数,例如foo=123 ...