Description

    反正切函数可展开成无穷级数,有例如以下公式 

    (当中0 <= x <= 1) 公式(1) 

    使用反正切函数计算PI是一种经常使用的方法。比如,最简单的计算PI的方法: 

    PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2) 

    然而,这样的方法的效率非常低。但我们能够依据角度和的正切函数公式: 

    tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3) 

    通过简单的变换得到: 

    arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4) 

    利用这个公式。令p=1/2,q=1/3,则(p+q)/(1-pq)=1。有 

    arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1) 

    使用1/2和1/3的反正切来计算arctan(1)。速度就快多了。
我们将公式(4)写成例如以下形式 arctan(1/a)=arctan(1/b)+arctan(1/c) 当中a,b和c均为正整数。 我们的问题是:对于每个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于随意的a都存在整数解。假设有多个解,要求你给出b+c最小的解。

Input

    输入文件里仅仅有一个正整数a,当中 1 <= a <= 60000。

Output

    输出文件里仅仅有一个整数,为 b+c 的值。

Sample Input

    1

Sample Output

    5
题意:本题在给定1/a=(1/b+1/c)/1-(1/a*(1/b))的情况下,要求最小的a+b,每个例子给定a。假设我们枚举b和c的话。时间消耗不起,我们自然想到把b,c表示为和a相关的等式。顾设b=a+m,c=a+n,带入上式化简得(a*a+1)=m*n,如今仅仅要逆序枚举m或者n就能够了。
ac代码例如以下:

///@zhangxiaoyu
///2015/8/13 #include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL; int main()
{
LL a;
int i;
while(~scanf("%lld",&a))
{
for(i=a;i>=1;i--)
{
if((a*a+1)%i==0)
break;
}
LL ans;
ans=i+(a*a+1)/i+2*a;
printf("%lld\n",ans);
}
return 0;
}

Poj 4227 反正切函数的应用的更多相关文章

  1. Openjudge/Poj 1183 反正切函数的应用

    1.链接地址: http://bailian.openjudge.cn/practice/1183 http://poj.org/problem?id=1183 2.题目: 总时间限制: 1000ms ...

  2. POJ 1183 反正切函数的应用

    H - 反正切函数的应用 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit ...

  3. POJ 1183 反正切函数的应用(数学代换,基本不等式)

    题目链接:http://poj.org/problem?id=1183 这道题关键在于数学式子的推导,由题目有1/a=(1/b+1/c)/(1-1/(b*c))---------->a=(b*c ...

  4. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  5. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  6. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  7. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  8. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

  9. POJ题目分类(转)

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

随机推荐

  1. Java并发(3)- 聊聊Volatile

    引言 谈到volatile关键字,大多数开发者都有一定了解,可以说是开发者非常熟悉,深入之后又非常陌生的一个关键字.相当于轻量的synchronized,也叫轻量级锁,与synchronized相比性 ...

  2. 在AppCode中的razor调用HtmlHelper方法和UrlHelper方法

    原文发布时间为:2011-05-17 -- 来源于本人的百度文章 [由搬家工具导入] 可以写一个帮助类,如下 using System.Web.WebPages;using System.Web.Mv ...

  3. POCO库中文编程参考指南(6)Poco::Timestamp

    1 类型别名 三个时间戳相关的类型别名,TimeDiff表示两个时间戳的差,第二个是以微秒为单位的时间戳,第三个是以 100 纳秒(0.1 微妙)为单位的时间戳: typedef Int64 Time ...

  4. 8.OpenStack网络组件

    添加网络组件 安装和配置控制器节点 创建数据库 mysql -uroot -ptoyo123 CREATE DATABASE neutron; GRANT ALL PRIVILEGES ON neut ...

  5. RobotFramework自动化4-批量操作案例【转载】

    本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/robotframework/ 前言 有时候一个页面上有多个对象需要操作,如果一个个去定 ...

  6. c语言argc argv

    转载自 http://blog.csdn.net/yukiooy/article/details/4682989 main(int argc,char *argv[ ]) argv为指针的指针 arg ...

  7. VS2010安装包制作

    最近对软件安装包制作研究了一下,下面记录了一种比较简单,不用写代码的方法. 1.New Project---->Other Project Types ---->Visual Studio ...

  8. (10)C#静态方法,静态字段,静态类,匿名类

    6.静态方法 使用静态方法就可不必用类的实例化调用次函数 class Test { public static void method() { ........ } //当调用一个method()时就 ...

  9. POJ 2184 Cow Exhibition【01背包+负数(经典)】

    POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...

  10. Nginx配置文件分析

    #user nobody; #启动进程数,即启动ngnix服务的个数,通常设置和cpu的数量相等 worker_processes 1; #全局错误日志及PID文件 #error_log logs/e ...