Mathematics Base - 期望、方差、协方差、相关系数总结
参考:《深度学习500问》
期望
在概率论和统计学中,数学期望(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。它反映随机变量平均取值的大小。
- 线性运算: \(E(ax+by+c) = aE(x)+bE(y)+c\)
- 推广形式: \(E(\sum_{k=1}^{n}{a_ix_i+c}) = \sum_{k=1}^{n}{a_iE(x_i)+c}\)
- 函数期望:设\(f(x)\)为\(x\)的函数,则\(f(x)\)的期望为
- 离散函数: \(E(f(x))=\sum_{k=1}^{n}{f(x_k)P(x_k)}\)
- 连续函数: \(E(f(x))=\int_{-\infty}^{+\infty}{f(x)p(x)dx}\)
注意:
- 函数的期望不等于期望的函数,即\(E(f(x))=f(E(x))\)
- 一般情况下,乘积的期望不等于期望的乘积。
- 如果\(X\)和\(Y\)相互独立,则\(E(xy)=E(x)E(y)\)。
方差
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。方差是一种特殊的期望。定义为:
\[
Var(x) = E((x-E(x))^2)
\]
方差性质:
1)\(Var(x) = E(x^2) -E(x)^2\)
2)常数的方差为0;
3)方差不满足线性性质;
4)如果\(X\)和\(Y\)相互独立, \(Var(ax+by)=a^2Var(x)+b^2Var(y)\)
协方差
协方差是衡量两个变量线性相关性强度及变量尺度。 两个随机变量的协方差定义为:
\[
Cov(x,y)=E((x-E(x))(y-E(y)))
\]
方差是一种特殊的协方差。当\(X=Y\)时,\(Cov(x,y)=Var(x)=Var(y)\)。
协方差性质:
1)独立变量的协方差为0。
2)协方差计算公式:
\[
Cov(\sum_{i=1}^{m}{a_ix_i}, \sum_{j=1}^{m}{b_jy_j}) = \sum_{i=1}^{m} \sum_{j=1}^{m}{a_ib_jCov(x_iy_i)}
\]
3)特殊情况:
\[
Cov(a+bx, c+dy) = bdCov(x, y)
\]
相关系数
相关系数是研究变量之间线性相关程度的量。两个随机变量的相关系数定义为:
\[
Corr(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}}
\]
相关系数的性质:
1)有界性。相关系数的取值范围是 ,可以看成无量纲的协方差。
2)值越接近1,说明两个变量正相关性(线性)越强。越接近-1,说明负相关性越强,当为0时,表示两个变量没有相关性。
Mathematics Base - 期望、方差、协方差、相关系数总结的更多相关文章
- 一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差
一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...
- 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】
2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...
- 51nod 1098 最小方差 排序+前缀和+期望方差公式
题目: 题目要我们,在m个数中,选取n个数,求出这n个数的方差,求方差的最小值. 1.我们知道,方差是描述稳定程度的,所以肯定是着n个数越密集,方差越小. 所以我们给这m个数排个序,从连续的n个数中找 ...
- Mathematics Base - Tensor
以下是我对张量的理解,备注是具体解释,Xmind导出的图片没法显示出来,主要还是将张量间的关系画出来,方便理解. 图1 张量
- 最大似然估计、n阶矩、协方差(矩阵)、(多元)高斯分布 学习摘要
最大似然估计 似然与概率 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)和概率(Probability)是两个不同的概念.概率是在特定环境下某件事 ...
- 可决系数R^2和方差膨胀因子VIF
然而很多时候,被筛选的特征在模型上线的预测效果并不理想,究其原因可能是由于特征筛选的偏差. 但还有一个显著的因素,就是选取特征之间之间可能存在高度的多重共线性,导致模型对测试集预测能力不佳. 为了在筛 ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- [转]概率基础和R语言
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语 ...
- Mahout之(三)相似性度量
User CF 和 Item CF 都依赖于相似度的计算,因为只有通过衡量用户之间或物品之间的相似度,才能找到用户的“邻居”,才能完成推荐.上文简单的介绍了相似性的计算,但不完全,下面就对常用的相似度 ...
随机推荐
- HDU 4267 A Simple Problem with Integers(2012年长春网络赛A 多颗线段树+单点查询)
以前似乎做过类似的不过当时完全不会.现在看到就有点思路了,开始还有洋洋得意得觉得自己有不小的进步了,结果思路错了...改了很久后测试数据过了还果断爆空间... 给你一串数字A,然后是两种操作: &qu ...
- Network IP Availability Extension
可以查询网络的IP使用情况 neutron net-ip-availability-list neutron net-ip-availability-show GET /v2.0/network-ip ...
- IE和FireFox关于CSS的兼容性
1. [代码][Java]代码 CSS对浏览器的兼容性有时让人很头疼,或许当你了解当中的技巧跟原理,就会觉得也不是难事,从网上收集了IE7,6与Fireofx的兼容性处理技巧并整理了一下.对于web2 ...
- ZSetOperations
有序集合,默认按照score升序排列,存储格式K(1)==V(n),V(1)=S(1)(K=key,V=value,S=score) 1.add(K,V,S):添加 2.count(K,Smin,Sm ...
- chrome浏览器的跨域设置-包括版本49前后两种设置 ,windows&mac
做前后分离的webapp开发的时候,出于一些原因往往需要将浏览器设置成支持跨域的模式,好在chrome浏览器就是支持可跨域的设置,网上也有很多chrome跨域设置教程.但是新版本的chrome浏览器提 ...
- 关于MFC资源句柄、ID和对象
一.资源.句柄和ID 资源: MFC中的资源,如菜单.对话框.图标.工具条.对话框等,是windows创建的,并占用堆内存.windows在创建这些资源时候会给每个资源分配一个句柄,用来标记这些资源, ...
- JavaWEB - JSP及隐含对象
---------------------------------------------------------------------------------------------------- ...
- 如何调整chm文字字体大小
chm文档是使用用层叠样式表来控制字符大小的,通过IE的改变“文字大小”是没效果的,那我们是不是就没有办法改变它的大小了呢?显然不是的. 工具/原料 chm文件 方法/步骤 首先打开chm ...
- C++STL 库中set容器应用
#include<iostream> #include<cstdio> #include<set> using namespace std; set<int& ...
- 【转】 Pro Android学习笔记(十九):用户界面和控制(7):ListView
目录(?)[-] 点击List的item触发 添加其他控件以及获取item数据 ListView控件以垂直布局方式显示子view.系统的android.app.ListActivity已经实现了一个只 ...