应该算高斯消元经典题了吧。

题意:一个无向连通图,有两个人分别在\(s,t\),若一个人在\(u\),每一分钟有\(p[u]\)的概率不动,否则随机前往一个相邻的结点,求在每个点相遇的概率

题解

首先求一个\(mov[i]=\frac{1-p[i]}{deg[i]}\)表示结点i每次移动到某个相邻结点的概率,\(deg[i]\)表示结点\(i\)的度

为了方便,我们把每个点向自己连条边,下面写式子好些(注意度数不能增加)

然后考虑设计状态\(f(a,b)\)表示第一个人在\(a\),第二个人在\(b\)的概率

\[f(a,b)=\sum_{(u,a),(v,b),u\not =v}g(u,a)g(v,b)
\]

其中\(g(a,b)\)表示\(a\)走\(b\)的概率,当\(a=b\)时为\(p[a]\),否则为\(mov[a]\)

然后把二元组映射到大小为\(n^2\)的一维数组,高斯消元,注意\(f(s,t)=1\)

时间复杂度:\(O(n^6)\)

#include <algorithm>
#include <cstdio>
#include <vector>
#include <cmath>
using namespace std; const int N = 25; int n, m, s, t, deg[N];
double mov[N], p[N];
vector<int> G[N]; double calc(int u, int v) {
return u == v ? p[u] : mov[u];
} int pos(int u, int v) {
return (u - 1) * n + v;
} double a[N * N][N * N]; void gauss(int n) {
for(int i = 1, j = 1; i <= n; j = ++ i) {
for(int k = i + 1; k <= n; k ++) if(fabs(a[j][i]) < fabs(a[k][i])) j = k;
if(i != j) for(int k = i; k <= n + 1; k ++) swap(a[j][k], a[i][k]);
for(j = i + 1; j <= n; j ++) {
double z = a[j][i] / a[i][i];
for(int k = i; k <= n + 1; k ++) a[j][k] -= z * a[i][k];
}
}
for(int i = n; i >= 1; i --) {
for(int j = i + 1; j <= n; j ++) a[i][n + 1] -= a[j][n + 1] * a[i][j];
a[i][n + 1] /= a[i][i];
}
} int main() {
scanf("%d%d%d%d", &n, &m, &s, &t);
for(int u, v, i = 1; i <= m; i ++) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
deg[u] ++; deg[v] ++;
}
for(int i = 1; i <= n; i ++) {
scanf("%lf", p + i);
G[i].push_back(i);
mov[i] = (1 - p[i]) / deg[i];
}
int k = n * n;
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= n; j ++) {
int p = pos(i, j); a[p][p] = -1;
if(i == s && j == t) a[p][k + 1] = -1;
for(int x = 0; x < G[i].size(); x ++) {
int u = G[i][x];
for(int y = 0; y < G[j].size(); y ++) {
int v = G[j][y];
if(u == v) continue ;
a[p][pos(u, v)] += calc(u, i) * calc(v, j);
}
}
}
}
gauss(k);
for(int i = 1; i <= n; i ++)
printf("%.6f ", a[pos(i, i)][k + 1]);
return 0;
}

「BZOJ 3270」博物馆「高斯消元」的更多相关文章

  1. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  2. 「ZOJ 1354」Extended Lights Out「高斯消元」

    题意:给定一个\(5\times 6\)的棋盘的\(01\)状态,每次操作可以使它自己和周围四个格子状态取反,求如何操作,输出一个\(01\)矩阵 题解:这题可以通过枚举第一行的状态然后剩下递推来做, ...

  3. 「中山纪中集训省选组D4T1」折射伤害 高斯消元

    题目描述 在一个游戏中有n个英雄,初始时每个英雄受到数值为ai的伤害,每个英雄都有一个技能"折射",即减少自己受到的伤害,并将这部分伤害分摊给其他人.对于每个折射关系,我们用数对\ ...

  4. BZOJ_3270_博物馆_(高斯消元+期望动态规划+矩阵)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3270 \(n\)个房间,刚开始两个人分别在\(a,b\),每分钟在第\(i\)个房间有\(p[ ...

  5. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  6. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

  7. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

  8. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  9. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

随机推荐

  1. 蓝桥杯 基础练习 BASIC-24 龟兔赛跑预测

    基础练习 龟兔赛跑预测   时间限制:1.0s   内存限制:512.0MB 问题描述 话说这个世界上有各种各样的兔子和乌龟,但是研究发现,所有的兔子和乌龟都有一个共同的特点——喜欢赛跑.于是世界上各 ...

  2. [转载]proc_mkdir与proc_create

    1:创建proc文件夹struct proc_dir_entry *proc_mkdir(const char *name, struct proc_dir_entry *parent);参数1:na ...

  3. Compare and Swap(CAS)

    CAS(Compare and Swap)是个原子操作.拿到一个新值后,CAS将其与内存中的值进行比较,若内存中的值和这个值不一样,则将这个值写入内存,否则,不做操作.在Java的 java.util ...

  4. 01-20Asp.net--Linq语法

    Linq语法--语言集成查询 同Sqlserver语句,但顺序颠倒了. 使用方法: 新建Linq类.dbml结尾的文件 在web窗体源代码中设计表,使用Repeater中转存放: <asp:Re ...

  5. FMX 模态窗体

    FMX 模态窗体 dlg := TForm2.Create(nil);  dlg.ShowModal(procedure(ModalResult: TModalResult)  begin       ...

  6. C++深度解析教程学习笔记(2)C++中的引用

    1.C++中的引用 (1)变量名的回顾 ①变量是一段实际连续存储空间的别名,程序中通过变量来申请并命名存储空间 ②通过变量的名字可以使用存储空间.(变量的名字就是变量的值,&变量名是取地址操作 ...

  7. C程序设计语言(K&R) 笔记2

    (1) #include <stdio.h> main(){ int c; while((c = getchar()) != EOF){ putchar(c); } } 注意,因为 != ...

  8. 重命名File

    File completeFile = new File(mFilePath + mFileName); if (completeFile.exists()) { File fileWithSuffi ...

  9. Web访问中的角色与协议

  10. day17-jdbc 6.Connection介绍

    package cn.itcast.jdbc; import com.mysql.jdbc.Connection; import java.sql.DriverManager; import java ...