使用sqoop将hive中的数据传到mysql中

1.新建hive表

hive> create external table sqoop_test(id int,name string,age int)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> STORED AS TEXTFILE
> location '/user/hive/external/sqoop_test';
OK
Time taken: 0.145 seconds

2.给hive表添加数据

数据如下
1,fz,13
2,test,13
3,dx,18

3.将文件上传到hdfs对应目录下

hadoop fs -put sqoop_test.txt /user/hive/external/sqoop_test/
EFdeMacBook-Pro:testfile FengZhen$ hadoop fs -ls /user/hive/external/sqoop_test/
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found items
-rw-r--r-- FengZhen supergroup -- : /user/hive/external/sqoop_test/sqoop_test.txt

上传成功
进入hive 命令行可查看到数据

hive> select * from sqoop_test;
OK
fz
test
dx
Time taken: 0.089 seconds, Fetched: row(s)

4.在mysql新建表,表结构和hive中的相同

CREATE TABLE `sqoop_test` (
`id` int() DEFAULT NULL,
`name` varchar() DEFAULT NULL,
`age` int() DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1

5.使用sqoop传输数据

sqoop export 
--connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test
--export-dir /user/hive/external/sqoop_test --input-fields-terminated-by ,
EFdeMacBook-Pro:bin FengZhen$ sqoop export --connect jdbc:mysql://localhost:3306/sqooptest --username root --password 123qwe --table sqoop_test --export-dir /user/hive/external/sqoop_test --input-fields-terminated-by ,
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4..bin__hadoop-2.0.-alpha/../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /Users/FengZhen/Desktop/Hadoop/sqoop-1.4..bin__hadoop-2.0.-alpha/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hadoop-2.8./share/hadoop/common/lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/FengZhen/Desktop/Hadoop/hbase-1.3./lib/slf4j-log4j12-1.7..jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
// :: INFO sqoop.Sqoop: Running Sqoop version: 1.4.
// :: WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
// :: INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
// :: INFO tool.CodeGenTool: Beginning code generation
// :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT
// :: INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `sqoop_test` AS t LIMIT
// :: INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /Users/FengZhen/Desktop/Hadoop/hadoop-2.8.
// :: INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-FengZhen/compile/7a078053fb0424d718e08c56fc9bab27/sqoop_test.jar
// :: INFO mapreduce.ExportJobBase: Beginning export of sqoop_test
// :: INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
// :: INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
// :: INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
// :: INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
// :: INFO client.RMProxy: Connecting to ResourceManager at localhost/127.0.0.1:
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO input.FileInputFormat: Total input files to process :
// :: INFO mapreduce.JobSubmitter: number of splits:
// :: INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
// :: INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1505268150495_0004
// :: INFO impl.YarnClientImpl: Submitted application application_1505268150495_0004
// :: INFO mapreduce.Job: The url to track the job: http://192.168.1.64:8088/proxy/application_1505268150495_0004/
// :: INFO mapreduce.Job: Running job: job_1505268150495_0004
// :: INFO mapreduce.Job: Job job_1505268150495_0004 running in uber mode : false
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: map % reduce %
// :: INFO mapreduce.Job: Job job_1505268150495_0004 completed successfully
// :: INFO mapreduce.Job: Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Job Counters
Launched map tasks=
Data-local map tasks=
Total time spent by all maps in occupied slots (ms)=
Total time spent by all reduces in occupied slots (ms)=
Total time spent by all map tasks (ms)=
Total vcore-milliseconds taken by all map tasks=
Total megabyte-milliseconds taken by all map tasks=
Map-Reduce Framework
Map input records=
Map output records=
Input split bytes=
Spilled Records=
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=
// :: INFO mapreduce.ExportJobBase: Transferred bytes in 26.9573 seconds (28.1185 bytes/sec)
// :: INFO mapreduce.ExportJobBase: Exported records.

传输完成,mysql已经有数据了。

使用sqoop将mysql数据导入到hdfs

使用 sqoop 将 hive 数据导出到 mysql (export)的更多相关文章

  1. 利用sqoop将hive数据导入导出数据到mysql

    一.导入导出数据库常用命令语句 1)列出mysql数据库中的所有数据库命令  #  sqoop list-databases --connect jdbc:mysql://localhost:3306 ...

  2. 从hive将数据导出到mysql(转)

    从hive将数据导出到mysql http://abloz.com 2012.7.20 author:周海汉 在上一篇文章<用sqoop进行mysql和hdfs系统间的数据互导>中,提到s ...

  3. Hive数据导出的几种方式

    在hive的日常使用中,经常需要将hive表中的数据导出来,虽然hive提供了多种导出方式,但是面对不同的数据量.不同的需求,如果随意就使用某种导出方式,可能会导致导出时间过长,导出的结果不满足需求, ...

  4. MSSQL数据导出到MYSQL

    MSSQL数据导出到MYSQL 花了一天时间把MSSQL里的数据导出到MYSQL, 好麻烦,二个数据库都是阿里云买的云服务器. 先上阿里云控制面板,备份下MSSQL数据库,下载备份下来,在本地电脑上还 ...

  5. 使用JDBC+POI把Excel中的数据导出到MySQL

    POI是Apache的一套读MS文档的API,用它还是可以比较方便的读取Office文档的.目前支持Word,Excel,PowerPoint生成的文档,还有Visio和Publisher的. htt ...

  6. 如何利用sqoop将hive数据导入导出数据到mysql

    运行环境  centos 5.6   hadoop  hive sqoop是让hadoop技术支持的clouder公司开发的一个在关系数据库和hdfs,hive之间数据导入导出的一个工具. 上海尚学堂 ...

  7. [Sqoop]将Hive数据表导出到Mysql

    业务背景 mysql表YHD_CATEG_PRIOR的结构例如以下: -- Table "YHD_CATEG_PRIOR" DDL CREATE TABLE `YHD_CATEG_ ...

  8. 用java代码调用shell脚本执行sqoop将hive表中数据导出到mysql

    1:创建shell脚本 touch sqoop_options.sh chmod 777 sqoop_options.sh 编辑文件  特地将执行map的个数设置为变量  测试 可以java代码传参数 ...

  9. Hive总结(八)Hive数据导出三种方式

    今天我们再谈谈Hive中的三种不同的数据导出方式. 依据导出的地方不一样,将这些方式分为三种: (1).导出到本地文件系统. (2).导出到HDFS中: (3).导出到Hive的还有一个表中. 为了避 ...

随机推荐

  1. 使用rsa进行http传输加密

    目录 1. RSA算法 2. HTTPS 2.1 HTTPS优点 2.2 HTTPS缺点 3. RSA传输加密实现 3.1 所需插件 3.1.1 JS插件 3.1.2 所需JAR 3.1.3 代码 4 ...

  2. 常见Linux/Unix开发辅助命令什锦

    很多零碎命令集锦: 1. 怎样通过命令下载ftp文件 read -s -p "Your passwd: " Passwd; wget --user=YourUserName --p ...

  3. asp.net core 系列之Response caching(1)

    这篇文章简单的讲解了response caching: 讲解了cache-control,及对其中的头和值的作用,及设置来控制response caching; 简单的罗列了其他的缓存技术:In-me ...

  4. 实现Nullable 可空类型

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace demo ...

  5. python学习 04 函数参数

    1.参数可以传递元组,但是要加* 2.参数可以传递字典,但是要加**

  6. 【Atheros】内核调试及网卡加载等问题小结

    我做的其他很多工作就比较有针对性了,不是什么大众性的问题,比如加统计代码.实现自己的速率调整算法或者加一些自己的控制什么的,就不再单独介绍了,最后呢再罗列一些小问题,供参考. 1. 加载模块(执行wi ...

  7. 从sql走向linq的我撞死在起点上

    [本文纯个人理解,错误轻喷,非常希望能有大神指点] A left (outer) join B on A.bid=B.id 上面这句话叫做左连接,原因是left(左)join(加入,连入)被译为左连接 ...

  8. 阿里云服务器---centos编译安装ffmpeg

    环境 系统环境:CentOS release 6.7 (Final) 需求 编译安装ffmpeg 获取依赖 安装依赖包 yum install -y autoconf automake cmake f ...

  9. ConfigurableBeanFactory

    ConfigurableBeanFactory :关系如下 在上面这样的一个关系图中可以先看下SingletonBeanRegistry的源代码: package org.springframewor ...

  10. vue 计算属性和监听器

    一.计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div> {{ message.split('').rev ...