\(\color{#0066ff}{题目描述}\)

几千年前,有一个小王国位于太平洋的中部。王国的领土由两个分离的岛屿组成。由于洋流的冲击,两个岛屿的形状都变成了凸多边形。王国的国王想建立一座桥来连接这两个岛屿。为了把成本降到最低,国王要求你,主教,找到两个岛屿边界之间最小的距离。

\(\color{#0066ff}{输入格式}\)

输入由几个测试用例组成。

每个测试用两个整数n,m(3≤n,m≤10000)开始

接下来的n行中的每一行都包含一对坐标,用来描述顶点在一个凸多边形中的位置。

下一条m线中的每一条都包含一对坐标,它描述了一个顶点在另一个凸多边形中的位置。

n=m=0的行表示输入的结束。

坐标在这个范围内[-10000,10000]。

\(\color{#0066ff}{输出格式}\)

对每个测试用例输出最小距离。在0.001范围内的错误是可以接受的

\(\color{#0066ff}{输入样例}\)

4 4
0.00000 0.00000
0.00000 1.00000
1.00000 1.00000
1.00000 0.00000
2.00000 0.00000
2.00000 1.00000
3.00000 1.00000
3.00000 0.00000
0 0

\(\color{#0066ff}{输出样例}\)

1.00000

\(\color{#0066ff}{数据范围与提示}\)

none

\(\color{#0066ff}{题解}\)

旋转卡壳

输入的时候就是凸包,所以不用再求了

对于最近距离,可能是点点,点边, 边边,这个可以在点到边的距离那里一并处理

距离可以通过面积判断(底固定,高最大)

(叉积是负的,所以用<) 找到高最小的更新ans

#include <cstdio>
#include <cmath>
#include <cctype>
#include <algorithm>
#define _ 0
#define LL long long
inline LL in() {
LL x = 0, f = 1; char ch;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
while(isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getchar();
return x * f;
}
const int maxn = 1e4 + 100;
int n, m;
struct node {
double x, y;
node(double x = 0, double y = 0)
:x(x), y(y) {}
node operator - (const node &b) const {
return node(x - b.x, y - b.y);
}
double operator ^ (const node &b) const {
return x * b.y - y * b.x;
}
double operator * (const node &b) const {
return x * b.x + y * b.y;
}
double dis() {
return sqrt(x * x + y * y);
}
double dis(const node &a, const node &b) {
node c = *this;
//垂足不在线段ab上
if((b - a) * (c - a) < 0) return (c - a).dis();
if((a - b) * (c - b) < 0) return (c - b).dis();
//平行四边形面积 / 底 = 高
return fabs(((a - b) ^ (c - b)) / (a - b).dis());
}
}A[maxn], B[maxn];
double Min(node a, node b, node c, node d) {
return std::min(std::min(c.dis(a,b),d.dis(a,b)),std::min(a.dis(c,d),b.dis(c,d)));
}
double work() {
double ans = 1e20;
int min = 0, max = 0;
for(int i = 0; i < n; i++) if(A[i].y < A[min].y) min = i;
for(int i = 0; i < m; i++) if(B[i].y > B[max].y) max = i;
A[n] = A[0], B[m] = B[0];
for(int i = 0; i < n; i++) {
node t = A[min + 1] - A[min];
while((t ^ (B[max] - A[min])) < (t ^ (B[max + 1] - A[min]))) max = (max + 1) % m;
ans = std::min(ans, Min(A[min], A[min + 1], B[max], B[max + 1]));
min = (min + 1) % n;
}
return ans;
}
int main() {
while("fuck") {
n = in(), m = in();
if(!n && !m) break;
for(int i = 0; i < n; i++) scanf("%lf%lf", &A[i].x, &A[i].y);
for(int i = 0; i < m; i++) scanf("%lf%lf", &B[i].x, &B[i].y);
printf("%.3f\n", work());
}
return 0;
}

Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离的更多相关文章

  1. poj 3608 旋转卡壳求不相交凸包最近距离;

    题目链接:http://poj.org/problem?id=3608 #include<cstdio> #include<cstring> #include<cmath ...

  2. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  3. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  4. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包

    [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 2081  Solved: 920 ...

  6. POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)

    Description Thousands of thousands years ago there was a small kingdom located in the middle of the ...

  7. poj 3608(旋转卡壳求解两凸包之间的最短距离)

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9768   Accepted: ...

  8. POJ 3608 旋转卡壳

    思路: 旋转卡壳应用 注意点&边  边&边  点&点 三种情况 //By SiriusRen #include <cmath> #include <cstdi ...

  9. poj 2079(旋转卡壳求解凸包内最大三角形面积)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9060   Accepted: 2698 Descript ...

随机推荐

  1. Ubuntu14.04LTS上安装Pip

    pip是一个安装和管理Python包的工具.在Pip的帮助下,你可以安装独特版本的包. 最重要的是,Pip可以通过一个“requirements”的工具来管理一个由包组成的列表和版本号. Pip很像e ...

  2. Ueditor/自定义配置

    UEditor除 了具有轻量.可定制等优点外,还始终将优化编辑操作.提升用户体验摆在了很重要的位置.在这一点上,除了对编辑器功能.性能.实现细节等不断地改进和追求 创新之外,众多灵活而人性化的自定义配 ...

  3. appium_python_android测试环境搭建

    第一步  安装appium •Appium是由.NET 开发的,所以,它会依赖 .NET framework相关组件,所以先安装.net framework 4.5,备注: Appium最低支持.ne ...

  4. 10-21C#基础--集合

    二.集合  //定义一个集合,集合是一个类, 1. 定义: ArrayList al = new ArrayList(); 2.添加数据:al.add();//添加数值,可以添加无数个元素,集合中没有 ...

  5. DAY10-python并发编程之携程

    一.引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...

  6. Hbase表重命名 表改名

    PS:现在我有个表 :test11_new  ,我要给他改名 开始: 1.先disable掉表hbase(main):023:0> disable 'test11_new' 0 row(s) i ...

  7. JVM知识点总览

    jvm 总体梳理 jvm体系总体分四大块: 类的加载机制 jvm内存结构 GC算法 垃圾回收 GC分析 命令调优 当然这些知识点在之前的文章中都有详细的介绍,这里只做主干的梳理 这里画了一个思维导图, ...

  8. 详解CSS盒模型(转)

    详解CSS盒模型   阅读目录 一些基本概念 盒模型 原文地址:http://luopq.com/2015/10/26/CSS-Box-Model/ 本文主要是学习CSS盒模型的笔记,总结了一些基本概 ...

  9. Python_pip_03_安装模块出现错误时咋整

    >在DOS窗口中到Python安装路径的scripts中执行  pip install pyperclip 出现错误 >>错误提示:Fatal error in launcher: ...

  10. wpf仿qq边缘自动停靠,支持多屏

    wpf完全模仿qq边缘自动隐藏功能,采用鼠标钩子获取鼠标当前状态,在通过当前鼠标的位置和点击状态来计算是否需要隐藏. 以下是实现的具体方法: 一.鼠标钩子实时获取当前鼠标的位置和点击状态 /// &l ...