IDA逆向常用宏定义
/* This file contains definitions used by the Hex-Rays decompiler output.
It has type definitions and convenience macros to make the
output more readable. Copyright (c) 2007-2011 Hex-Rays */ #if defined(__GNUC__)
typedef long long ll;
typedef unsigned long long ull;
#define __int64 long long
#define __int32 int
#define __int16 short
#define __int8 char
#define MAKELL(num) num ## LL
#define FMT_64 "ll"
#elif defined(_MSC_VER)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "I64"
#elif defined (__BORLANDC__)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "L"
#else
#error "unknown compiler"
#endif
typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong; typedef char int8;
typedef signed char sint8;
typedef unsigned char uint8;
typedef short int16;
typedef signed short sint16;
typedef unsigned short uint16;
typedef int int32;
typedef signed int sint32;
typedef unsigned int uint32;
typedef ll int64;
typedef ll sint64;
typedef ull uint64; // Partially defined types:
#define _BYTE uint8
#define _WORD uint16
#define _DWORD uint32
#define _QWORD uint64
#if !defined(_MSC_VER)
#define _LONGLONG __int128
#endif #ifndef _WINDOWS_
typedef int8 BYTE;
typedef int16 WORD;
typedef int32 DWORD;
typedef int32 LONG;
#endif
typedef int64 QWORD;
#ifndef __cplusplus
typedef int bool; // we want to use bool in our C programs
#endif // Some convenience macros to make partial accesses nicer
// first unsigned macros:
#define LOBYTE(x) (*((_BYTE*)&(x))) // low byte
#define LOWORD(x) (*((_WORD*)&(x))) // low word
#define LODWORD(x) (*((_DWORD*)&(x))) // low dword
#define HIBYTE(x) (*((_BYTE*)&(x)+1))
#define HIWORD(x) (*((_WORD*)&(x)+1))
#define HIDWORD(x) (*((_DWORD*)&(x)+1))
#define BYTEn(x, n) (*((_BYTE*)&(x)+n))
#define WORDn(x, n) (*((_WORD*)&(x)+n))
#define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
#define BYTE2(x) BYTEn(x, 2)
#define BYTE3(x) BYTEn(x, 3)
#define BYTE4(x) BYTEn(x, 4)
#define BYTE5(x) BYTEn(x, 5)
#define BYTE6(x) BYTEn(x, 6)
#define BYTE7(x) BYTEn(x, 7)
#define BYTE8(x) BYTEn(x, 8)
#define BYTE9(x) BYTEn(x, 9)
#define BYTE10(x) BYTEn(x, 10)
#define BYTE11(x) BYTEn(x, 11)
#define BYTE12(x) BYTEn(x, 12)
#define BYTE13(x) BYTEn(x, 13)
#define BYTE14(x) BYTEn(x, 14)
#define BYTE15(x) BYTEn(x, 15)
#define WORD1(x) WORDn(x, 1)
#define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
#define WORD3(x) WORDn(x, 3)
#define WORD4(x) WORDn(x, 4)
#define WORD5(x) WORDn(x, 5)
#define WORD6(x) WORDn(x, 6)
#define WORD7(x) WORDn(x, 7) // now signed macros (the same but with sign extension)
#define SLOBYTE(x) (*((int8*)&(x)))
#define SLOWORD(x) (*((int16*)&(x)))
#define SLODWORD(x) (*((int32*)&(x)))
#define SHIBYTE(x) (*((int8*)&(x)+1))
#define SHIWORD(x) (*((int16*)&(x)+1))
#define SHIDWORD(x) (*((int32*)&(x)+1))
#define SBYTEn(x, n) (*((int8*)&(x)+n))
#define SWORDn(x, n) (*((int16*)&(x)+n))
#define SBYTE1(x) SBYTEn(x, 1)
#define SBYTE2(x) SBYTEn(x, 2)
#define SBYTE3(x) SBYTEn(x, 3)
#define SBYTE4(x) SBYTEn(x, 4)
#define SBYTE5(x) SBYTEn(x, 5)
#define SBYTE6(x) SBYTEn(x, 6)
#define SBYTE7(x) SBYTEn(x, 7)
#define SBYTE8(x) SBYTEn(x, 8)
#define SBYTE9(x) SBYTEn(x, 9)
#define SBYTE10(x) SBYTEn(x, 10)
#define SBYTE11(x) SBYTEn(x, 11)
#define SBYTE12(x) SBYTEn(x, 12)
#define SBYTE13(x) SBYTEn(x, 13)
#define SBYTE14(x) SBYTEn(x, 14)
#define SBYTE15(x) SBYTEn(x, 15)
#define SWORD1(x) SWORDn(x, 1)
#define SWORD2(x) SWORDn(x, 2)
#define SWORD3(x) SWORDn(x, 3)
#define SWORD4(x) SWORDn(x, 4)
#define SWORD5(x) SWORDn(x, 5)
#define SWORD6(x) SWORDn(x, 6)
#define SWORD7(x) SWORDn(x, 7) // Helper functions to represent some assembly instructions. #ifdef __cplusplus // Fill memory block with an integer value
inline void memset32(void *ptr, uint32 value, int count)
{
uint32 *p = (uint32 *)ptr;
for ( int i=0; i < count; i++ )
*p++ = value;
} // Generate a reference to pair of operands
template<class T> int16 __PAIR__( int8 high, T low) { return ((( int16)high) << sizeof(high)*8) | uint8(low); }
template<class T> int32 __PAIR__( int16 high, T low) { return ((( int32)high) << sizeof(high)*8) | uint16(low); }
template<class T> int64 __PAIR__( int32 high, T low) { return ((( int64)high) << sizeof(high)*8) | uint32(low); }
template<class T> uint16 __PAIR__(uint8 high, T low) { return (((uint16)high) << sizeof(high)*8) | uint8(low); }
template<class T> uint32 __PAIR__(uint16 high, T low) { return (((uint32)high) << sizeof(high)*8) | uint16(low); }
template<class T> uint64 __PAIR__(uint32 high, T low) { return (((uint64)high) << sizeof(high)*8) | uint32(low); } // rotate left
template<class T> T __ROL__(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits; T high = value >> (nbits - count);
value <<= count;
value |= high;
return value;
} // rotate right
template<class T> T __ROR__(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits; T low = value << (nbits - count);
value >>= count;
value |= low;
return value;
} // carry flag of left shift
template<class T> int8 __MKCSHL__(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits; return (value >> (nbits-count)) & 1;
} // carry flag of right shift
template<class T> int8 __MKCSHR__(T value, uint count)
{
return (value >> (count-1)) & 1;
} // sign flag
template<class T> int8 __SETS__(T x)
{
if ( sizeof(T) == 1 )
return int8(x) < 0;
if ( sizeof(T) == 2 )
return int16(x) < 0;
if ( sizeof(T) == 4 )
return int32(x) < 0;
return int64(x) < 0;
} // overflow flag of subtraction (x-y)
template<class T, class U> int8 __OFSUB__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return (sx ^ __SETS__(y)) & (sx ^ __SETS__(x2-y));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(x-y2));
}
} // overflow flag of addition (x+y)
template<class T, class U> int8 __OFADD__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return ((1 ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(x2+y));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return ((1 ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(x+y2));
}
} // carry flag of subtraction (x-y)
template<class T, class U> int8 __CFSUB__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == 1 )
return uint8(x) < uint8(y);
if ( size == 2 )
return uint16(x) < uint16(y);
if ( size == 4 )
return uint32(x) < uint32(y);
return uint64(x) < uint64(y);
} // carry flag of addition (x+y)
template<class T, class U> int8 __CFADD__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == 1 )
return uint8(x) > uint8(x+y);
if ( size == 2 )
return uint16(x) > uint16(x+y);
if ( size == 4 )
return uint32(x) > uint32(x+y);
return uint64(x) > uint64(x+y);
} #else
// The following definition is not quite correct because it always returns
// uint64. The above C++ functions are good, though.
#define __PAIR__(high, low) (((uint64)(high)<<sizeof(high)*8) | low)
// For C, we just provide macros, they are not quite correct.
#define __ROL__(x, y) __rotl__(x, y) // Rotate left
#define __ROR__(x, y) __rotr__(x, y) // Rotate right
#define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x<<y)
#define __CFSHR__(x, y) invalid_operation // Generate carry flag for (x>>y)
#define __CFADD__(x, y) invalid_operation // Generate carry flag for (x+y)
#define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)
#define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x+y)
#define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)
#endif // No definition for rcl/rcr because the carry flag is unknown
#define __RCL__(x, y) invalid_operation // Rotate left thru carry
#define __RCR__(x, y) invalid_operation // Rotate right thru carry
#define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL
#define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR
#define __SETP__(x, y) invalid_operation // Generate parity flag for (x-y) // In the decompilation listing there are some objects declarared as _UNKNOWN
// because we could not determine their types. Since the C compiler does not
// accept void item declarations, we replace them by anything of our choice,
// for example a char: #define _UNKNOWN char #ifdef _MSC_VER
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#endif
IDA逆向常用宏定义的更多相关文章
- iOS - 常用宏定义和PCH文件知识点整理
(一)PCH文件操作步骤演示: 第一步:图文所示: 第二步:图文所示: (二)常用宏定义整理: (1)常用Log日志宏(输出日志详细可定位某个类.某个函数.某一行) //=============== ...
- iOS之常用宏定义
下面我为大家提供一些常用的宏定义! 将这些宏定义 加入到.pch使用 再也不用 用一次写一次这么长的程序了 //-------------------获取设备大小------------------- ...
- iOS 日常工作之常用宏定义大全
转自:http://www.jianshu.com/p/213b3b96cafe 前言: 在工作中, 很多小伙伴都会在PCH文件定义一些常用的宏,但是又怕写这些简单的宏浪费时间,又有时候忘记怎么定义了 ...
- iOS常用宏 定义
总结了iOS开发过程中的一些常用宏,以后会陆陆续续添加进来. 字符串是否为空 1 #define kStringIsEmpty(str) ([str isKindOfClass:[NSNull c ...
- iOS日常工作之常用宏定义大全
前言: 在工作中, 很多小伙伴都会在PCH文件定义一些常用的宏,但是又怕写这些简单的宏浪费时间,又有时候忘记怎么定义了怎么办?本人在工作中也是如此.所以在这里给大家分享一些常用的宏定义,喜欢的小伙伴可 ...
- android的 makefile里 的常用 宏定义
在Android编译框架中,把许多固定的.反复用到的目录路径定义为 宏变量,常用 宏 如下: out/target/product/xxx的宏即为:PRODUCT_OUT out/target/pro ...
- iOS开发中的常用宏定义
在iOS开发的过程中合理的使用宏定义能够极大提高编码的速度,下面是一些常用的宏定义,部分内容来自互联网 Log // 调试状态, 打开LOG功能 #ifdef DEBUG #define GLLog( ...
- IOS 程序员开发最常用宏定义
网上对IOS的宏定义比较多,我总结了一些最常用的宏,后续还会继续补上. 1.首次启动判断: #define First_Launched @"firstLaunch" 2.ios7 ...
- iOS常用宏定义--实用
在这里给大家分享一些常用的宏定义,喜欢的小伙伴可以直接在项目中使用(持续更新)!为了大家使用方便,请点击GitHub - 宏定义头文件下载 ! 1.获取屏幕宽度与高度 #define SCREEN_W ...
随机推荐
- windows环境安装python虚拟环境
虚拟环境安装参考 https://www.cnblogs.com/suke99/p/5355894.html workon环境变量配置参照 https://www.cnblogs.com/jiuyan ...
- CWnd* pParent
Dlg(CWnd* pParent = NULL)的意思是:构造函数.创建对象时第一个调用的地方.CWnd* pParent=NULL是构造的参数,可以不传入,默认为NULL 构造函数(constru ...
- [工具]ps
ps 如果想看一个进程的启动时间,可以用lstart来看 [root@jiangyi02.sqa.zmf /home/ahao.mah] #ps -eo pid,lstart,etime,cmd |g ...
- Async/await语法糖实现(Generator)
// generator也是一种迭代器(Iterator) 有next方法,并返回一个对象{value:...,done:...} function run(generatorFunction) { ...
- ionic使用cryptojs加密 复制到黏贴版 使用md5
npm install crypto-js npm install --save @types/crypto-js import * as crypto from "crypto-js&qu ...
- 【codeforces 515A】Drazil and Date
[题目链接]:http://codeforces.com/contest/515/problem/A [题意] 每次只能走到相邻的四个格子中的一个; 告诉你最后走到了(a,b)走了多少步->s ...
- ansible common modules
##Some common modules[cloud modules] [clustering modules] [command modules]command - executes a comm ...
- Android DynamicGrid:拖曳交换位置
Android DynamicGrid:拖曳交换位置 Android DynamicGrid是一个第三方开源项目,DynamicGrid在github上的项目主页是:https://github ...
- [hdu2222] [AC自动机模板] Keywords Search [AC自动机]
AC自动机模板,注意!ch,Fail,lab数组的大小不是n而是节点个数,需要认真计算! #include <iostream> #include <algorithm> #i ...
- in与exists的区别
转载自:http://blog.csdn.net/lick4050312/article/details/4476333 select * from Awhere id in(select id fr ...