[MySQL优化案例]系列 — RAND()优化
众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。
首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:
[yejr@imysql]> show create table t_innodb_random\G
*************************** 1. row ***************************
Table: t_innodb_random
Create Table: CREATE TABLE `t_innodb_random` (
`id` int(10) unsigned NOT NULL,
`user` varchar(64) NOT NULL DEFAULT '',
KEY `idx_id` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。
[yejr@imysql]> select count(*) from t_innodb_random\G
*************************** 1. row ***************************
count(*): 393216
1、常量等值检索:
[yejr@imysql]> explain select id from t_innodb_random where id = 13412\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: ref
possible_keys: idx_id
key: idx_id
key_len: 4
ref: const
rows: 1
Extra: Using index [yejr@imysql]> select id from t_innodb_random where id = 13412;
1 row in set (0.00 sec)
可以看到执行计划很不错,是常量等值查询,速度非常快。
2、使用RAND()函数乘以常量,求得随机数后检索:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index [yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)\G
Empty set (0.26 sec)
可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。
我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 2
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away [yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G
Empty set (0.27 sec)
可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。
3、改造成普通子查询模式 ,这里有两次子查询
[yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away [yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G
Empty set (0.27 sec)
可以看到,执行计划也不好,执行耗时较慢。
4、改造成JOIN关联查询,不过最大值还是用常量表示
[yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: system
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1
Extra:
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: ref
possible_keys: idx_id
key: idx_id
key_len: 4
ref: const
rows: 1
Extra: Using where; Using index
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: No tables used [yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G
Empty set (0.00 sec)
这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。
这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:
[yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away [yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G
*************************** 1. row ***************************
id: 1301
1 row in set (0.00 sec)
可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。
小结:
从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。
5、再来看看用ORDRR BY RAND()方式一次取得多个随机值的方式:
[yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using index; Using temporary; Using filesort [yejr@imysql]> select id from t_innodb_random order by rand() limit 1000;
1000 rows in set (0.41 sec)
全索引扫描,生成排序临时表,太差太慢了。
6、把随机数放在子查询里看看:
[yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away [yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G
1000 rows in set (0.04 sec)
嗯,提速了不少,这个看起来还不赖:)
7、仿照上面的方法,改成JOIN和随机数子查询关联
[yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: system
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1
Extra:
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: range
possible_keys: idx_id
key: idx_id
key_len: 4
ref: NULL
rows: 196672
Extra: Using where; Using index
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: No tables used
*************************** 4. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away [yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G
1000 rows in set (0.00 sec)
可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。
综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。
上面说了那么多的废话,最后简单说下,就是把下面这个SQL:
SELECT id FROM table ORDER BY RAND() LIMIT n;
改造成下面这个:
SELECT id FROM table t1 JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;
如果想要达到完全随机,还可以改成下面这种写法:
SELECT id FROM table t1 JOIN (SELECT round(RAND() * (SELECT MAX(id) FROM table)) AS nid FROM table LIMIT n) t2 ON t1.id = t2.nid;
就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。
From: http://imysql.com/2014/07/04/mysql-optimization-case-rand-optimize.shtml
[MySQL优化案例]系列 — RAND()优化的更多相关文章
- [MySQL优化案例]系列 — 分页优化
通常,我们会采用ORDER BY LIMIT start, offset 的方式来进行分页查询.例如下面这个SQL: SELECT * FROM `t1` WHERE ftype=1 ORDER BY ...
- [MySQL优化案例]系列 — slave延迟很大优化方法
备注:插图来自网络搜索,如果觉得不当还请及时告知 :) 一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发.简单说,在master上是并发模式(以In ...
- [MySQL优化案例]系列 — 优化InnoDB表BLOB列的存储效率
首先,介绍下关于InnoDB引擎存储格式的几个要点:1.InnoDB可以选择使用共享表空间或者是独立表空间方式,建议使用独立表空间,便于管理.维护.启用 innodb_file_per_table 选 ...
- mysql优化案例
MySQL优化案例 Mysql5.1大表分区效率测试 Mysql5.1大表分区效率测试MySQL | add at 2009-03-27 12:29:31 by PConline | view:60, ...
- MySQL参数优化案例
环境介绍 优化层级与指导思想 优化过程 最小化安装情况下的性能表现 优化innodb_buffer_pool_size 优化innodb_log_files_in_group&innodb_l ...
- MySQL的索引单表优化案例分析
建表 建立本次优化案例中所需的数据库及数据表 CREATE DATABASE db0206; USE db0206; CREATE TABLE `db0206`.`article`( `id` INT ...
- mysql order by rand() 优化方法
mysql order by rand() 优化方法 适用于领取奖品等项目<pre>mysql> select * from user order by rand() limit 1 ...
- 记一次mysql多表查询(left jion)优化案例
一次mysql多表查询(left jion)优化案例 在新上线的供需模块中,发现某一个查询按钮点击后,出不来结果,找到该按钮对应sql手动执行,发现需要20-30秒才能出结果,所以服务端程序判断超时, ...
- MySQL优化篇系列文章(二)——MyISAM表锁与InnoDB锁问题
我可以和面试官多聊几句吗?只是想... MySQL优化篇系列文章(基于MySQL8.0测试验证),上部分:优化SQL语句.数据库对象,MyISAM表锁和InnoDB锁问题. 面试官:咦,小伙子,又来啦 ...
随机推荐
- JAVA模拟登录实例
近期在做公司一个web项目.要求在我们的系统上,可以显示其它站点上的数据. 刚開始接到这个任务时,还在想.简单的非常.直接用UrlConection直接进入该网页,然后获取该网页的html,取到想要的 ...
- Geeks - Detect Cycle in a Directed Graph 推断图是否有环
Detect Cycle in a Directed Graph 推断一个图是否有环,有环图例如以下: 这里唯一注意的就是,这是个有向图, 边组成一个环,不一定成环,由于方向能够不一致. 这里就是添加 ...
- 使用Linq 查询数据 构建对象 select new{}
linq 查询数据 /// <summary> /// 汽车品牌及车型 /// </summary> /// <returns></returns> p ...
- 2014年辛星解读css第二节
第一节我们简单介绍了一下CSS的工作流程,我相信读者会有一个大体的认识,那么接下来我们将会深入的研究一下CSS的细节问题,这些问题的涉及将会使我们的工作更加完好. *************凝视*** ...
- java多线程设置优先级
package com.itbuluoge.mythread; class SimpleThread extends Thread { private int priority; public Sim ...
- luogu1064 金明的预算方案
这道题我就想说一点:审题!附件只有2个!钱是10的整数倍,不是100的整数倍! #include <cstdio> #include <cstring> #include &l ...
- bzoj 2599(点分治)
2599: [IOI2011]Race Time Limit: 70 Sec Memory Limit: 128 MBSubmit: 3642 Solved: 1081[Submit][Statu ...
- 服务器通信REST、gRPC,Swagger/OpenAPI
服务间的通信方式是在采用微服务架构时需要做出一个最基本的决策.默认的选项是通过 HTTP 发送 JSON,也就是所谓的 REST API.我们也是从 REST 开始的,但最近我们决定改用 gRPC. ...
- dijkstra的stl实现(最近觉得挺方便的
dijkstra的stl实现(最近觉得挺方便的 stl可作为跳板 --- Rujia liu struct node { int dis, id; node(int dis = 0, int id = ...
- OOM三种类型
OOM的三种类型: 堆OOM /** * -Xmx1g -XX:+PrintGCDetails -XX:MaxDirectMemorySize=100m * * @param args */ publ ...