题目链接:

http://172.16.0.132/senior/#main/show/4668

题目:

题解:

考虑把A数组里的每个元素分解质因数,对于每个质因数开一个vector存一下包含这个质因数的元素对应的这个质因数的指数

我们可以枚举质因数分别处理。为什么时间复杂度是对的呢?因为对于任何一个元素质因数种类是不会很多的,而对于每个质因数我们仅考虑包含它的数而不是全部扫一遍,因而是对的

枚举质因数之后,我们得到它对应的指数序列。对于小于等于根号1e7的质因数,考虑把这个指数序列从小到大,对于某个位置与之前位置的贡献就是靠前位置的指数,因此我们不断累加前缀统计答案就好了;对于另外的质因数,可以发现包含它的指数序列只能是1,所以我们不需要排序可以直接得到答案(注意到要求计算的数列其实就是元素之间两两只算一次,但注意还需要算上和本身的gcd)

这个模数比较坑,直接乘取模的话会爆long long,因此我们采用慢速乘(不是类似快速幂的那种)

比如x*y,我们令inf=1e7

$a1=x \mod inf$

$a2=x/inf$

$b1=y \mod inf$

$b2=y/inf$

我们拆开来计算就是了,具体看代码

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll; const int N=4e4+;
const ll mo=1e11+;
const int M=1e6+;
const ll inf=1e7+;
int n,cnt;
int a[N],vis[inf];
ll p[N];
vector <int> pi[M];
inline int read()
{
char ch=getchar();int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void div(int x)
{
for (int i=;i*i<=x;i++)
{
if (x%i) continue;
if (!vis[i]) p[++cnt]=i,vis[i]=cnt;
int s=;
while (x%i==) x/=i,++s;
pi[vis[i]].push_back(s);
}
if (x>)
{
if (!vis[x]) p[++cnt]=x,vis[x]=cnt;
pi[vis[x]].push_back();
}
}
ll mul(ll x,ll y)
{
ll a1=x%inf;
ll a2=x/inf;
ll b1=y%inf;
ll b2=y/inf;
ll re=;
re=(re+a2*inf%mo*b2%mo*inf%mo)%mo;
re=(re+a2*inf%mo*b1%mo)%mo;
re=(re+a1*inf%mo*b2%mo)%mo;
re=(re+a1*b1%mo)%mo;
return re;
}
ll qpow(ll x,ll y)
{
ll re=;
for (;y;y>>=,x=mul(x,x)) if (y&) re=mul(re,x);
return re;
}
int main()
{
n=read();
for (int i=;i<=n;i++) a[i]=read(),div(a[i]);
ll ans=;
for (int i=;i<=cnt;i++)
{
if (1ll*p[i]*p[i]<=inf)
{
int pnt=pi[i].size();
sort(pi[i].begin(),pi[i].end());
ll s=;
for (int j=;j<pnt;j++)
{
ans=mul(ans,qpow(p[i],s));
s+=pi[i][j];
}
}
else
{
ll c=pi[i].size();
ans=mul(ans,qpow(p[i],c*(c-)/));
}
}
for (int i=;i<=n;i++) ans=mul(ans,1ll*a[i]);
printf("%lld\n",ans);
return ;
}

[jzoj 4668] [NOIP2016提高A组模拟7.19] 腐败 解题报告(质数分类+慢速乘)的更多相关文章

  1. [JZOJ 100026] [NOIP2017提高A组模拟7.7] 图 解题报告 (倍增)

    题目链接: http://172.16.0.132/senior/#main/show/100026 题目: 有一个$n$个点$n$条边的有向图,每条边为$<i,f(i),w(i)>$,意 ...

  2. [jzoj 4722] [NOIP2016提高A组模拟8.21] 跳楼机 解题报告 (spfa+同余)

    题目链接: http://172.16.0.132/senior/#main/show/4722 题目: DJL为了避免成为一只咸鱼,来找srwudi学习压代码的技巧.Srwudi的家是一幢h层的摩天 ...

  3. 【NOIP2016提高A组模拟8.19】(雅礼联考day2)总结

    第一题又有gcd,又有xor,本来想直接弃疗,不过后来想到了个水法: 当两个相邻的数满足条件时,那么他们的倍数也可能满足条件.然后没打,只打了个暴力. 正解就是各种结论,各种定理搞搞. 第二题,想都不 ...

  4. 【NOIP2016提高A组模拟8.19】(雅礼联考day2)公约数

    题目 给定一个正整数,在[1,n]的范围内,求出有多少个无序数对(a,b)满足gcd(a,b)=a xor b. 分析 显然a=b是一定不满足, 我们设\(a>b\), 易得gcd(a,b)&l ...

  5. 【NOIP2016提高A组模拟8.19】(雅礼联考day2)树上路径

    题目 给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E.(k为路径p上的边的权值和). 分析 点分治,设当前为x的,求在以x为根的子树中,经过x的路径(包括起点或 ...

  6. 【JZOJ4715】【NOIP2016提高A组模拟8.19】树上路径

    题目描述 给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E.(k为路径p上的边的权值和) 输入 第一行给出N,S,E.N代表树的点数,S,E如题目描述. 下面N- ...

  7. [JZOJ 5437] [NOIP2017提高A组集训10.31] Sequence 解题报告 (KMP)

    题目链接: http://172.16.0.132/senior/#main/show/5437 题目: 题解: 发现满足上述性质并且仅当A序列的子序列的差分序列与B序列的差分序列相同 于是我们把A变 ...

  8. JZOJ 4732. 【NOIP2016提高A组模拟8.23】函数

    4732. [NOIP2016提高A组模拟8.23]函数 (Standard IO) Time Limits: 1500 ms  Memory Limits: 262144 KB  Detailed ...

  9. JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠

    JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...

随机推荐

  1. caioj1497&&bzoj3125: CITY

    震惊!bzoj居然又被苏大佬D飞了... 这题煞笔模板题好吧. 然而bzojAC caiojWA%40??? 好强啊 今天早上发现是m打成n了囧 #include<cstdio> #inc ...

  2. 对python变量的理解

    #!/usr/bin/python class Person: '''some words content or descriptions!''' name='luomingchuan' _age = ...

  3. 基础apache命令

    在启动Apache服务之前,可以使用下面的命令来检查配置文件的正确性. C:\Apache2.2\bin> httpd  -n  Apache2.2  -t 还可以通过命令行控制Apache服务 ...

  4. C#中网络通信

    一.服务端代码 using System; using System.Collections.Generic; using System.Linq; using System.Net; using S ...

  5. 洛谷P4016 负载平衡问题(最小费用最大流)

    题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入输出格式 输入格 ...

  6. Apache-TomCat安装配置

    Apache-TomCat安装配置 本文是免安装版的Tomcat!(安装JavaJDK的步骤就不多述了!) (1)官网下载地址:https://tomcat.apache.org/download-8 ...

  7. Mysql command not found on mac pro

    export PATH=${PATH}:/usr/local/mysql/bin If you want this to be run every time you open terminal put ...

  8. 织梦Fatal error: Call to a member function GetInnerText()

    问题:织梦修改或者添加了自定义表单后在后台修改文章的时候出现如下错误:Fatal error: Call to a member function GetInnerText() on a non-ob ...

  9. Qwiklab'实验-DynamoDB, Redshift, Elasticsearch'

    title: AWS之Qwiklab subtitle: 4. Qwiklab'实验-Amazon DynamoDB, Amazon Redshift, Elasticsearch Service' ...

  10. BZOJ 1030 [JSOI2007]文本生成器 (Trie图+DP)

    题目大意:给你一堆字符串,一个串不合法的条件是这些字符串中任意一个是这个串的子串,求合法的串的数量 其实这道题比 [HNOI2008]GT考试 那道题好写一些,但道理是一样的 只不过这道题的答案可以转 ...