Description

Have you heard the fact “The base of every normal number system is 10” ?

Of course, I am not talking about number systems like Stern Brockot Number System. This problem has nothing to do with this fact but may have some similarity.

You will be given an N based integer number R and you are given the guaranty that R is divisible by (N-1). You will have to print the smallest possible value for N. The range for N is 2 <= N <= 62 and the digit symbols for 62 based number is (0..9 and A..Z and a..z). Similarly, the digit symbols for 61 based number system is (0..9 and A..Z and a..y) and so on.

Input

Each line in the input will contain an integer (as defined in mathematics) number of any integer base (2..62). You will have to determine what is the smallest possible base of that number for the given conditions. No invalid number will be given as input. The largest size of the input file will be 32KB.

Output

If number with such condition is not possible output the line “such number is impossible!” For each line of input there will be only a single line of output. The output will always be in decimal number system.

Sample Input

3

5

A

Sample Output

4

6

11

题意是:对于给定数字。能否使他是N进制,而且满足被N-1整除。假设能找到这样一个数N。那么输出N,否则输出such number is impossible!

首先,举个例 假如这个数是N进制的 2 A C D,这个数值为(2*N*N*N+A*N*N*+C*N+D),再对N-1取模:

先对第一项2*N*N*N取模,2%(N-1)N%(N-1)*N%(N-1)*N%(N-1)。N%(N-1)=1,所以第一项的值为2%(N-1),依据这个结果,能够得出(2*N*N*N+A*N*N+C*N+C)%(N-1)=(2+A+C+D)%(N-1)

那么这道题仅仅需把每一位数字的值加起来再对(N-1)取模就可以。

枚举N的值,推断是否取模结果为0。还要对N的范围加以限定。

#include<iostream>
#include<stdio.h>
#include<queue>
#include<stack>
#include<algorithm>
#include<string.h>
#include<string>
#include<math.h>
using namespace std;
int num[30005];
char s[30005];
int main()
{
while(scanf("%s",&s)!=EOF)
{
int len=strlen(s);
int Max=0;
for(int i=0;i<len;i++)
{
if(s[i]>='0'&&s[i]<='9')
num[i]=s[i]-'0';
else if(s[i]>='A'&&s[i]<='Z')
num[i]=s[i]-'A'+10;
else if(s[i]>='a'&&s[i]<='z')
num[i]=s[i]-'a'+36;
Max=max(Max,num[i]);//比方输入为A,那么进制至少从A開始寻找满足要求的进制
}
if(Max==0)
{
printf("2\n");//假设输入的数最大为0,那么仅仅能是2进制
}
int sum=0;
for(int i=0;i<len;i++)
{
sum+=num[i];
}
int flag=100;
for(int i=Max;i<=62;i++)
{
if(sum%i==0)
{
flag=i;
break;
}
}
if(flag<=61)
{
printf("%d\n",flag+1);
}
else
{
printf("such number is impossible!\n");//由于仅仅有62进制。大于61就不满足题目条件了
}
}
return 0;
}

POJ 2826 An Easy Problem!(简单数论)的更多相关文章

  1. POJ 2826 An Easy Problem? 判断线段相交

    POJ 2826 An Easy Problem?! -- 思路来自kuangbin博客 下面三种情况比较特殊,特别是第三种 G++怎么交都是WA,同样的代码C++A了 #include <io ...

  2. POJ 2826 An Easy Problem?!

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7837   Accepted: 1145 ...

  3. POJ 2826 An Easy Problem?![线段]

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12970   Accepted: 199 ...

  4. 简单几何(线段相交) POJ 2826 An Easy Problem?!

    题目传送门 题意:两条线段看成两块木板,雨水从上方往下垂直落下,问能接受到的水的体积 分析:恶心的分类讨论题,考虑各种情况,尤其是入口被堵住的情况,我的方法是先判断最高的两个点是否在交点的同一侧,然后 ...

  5. POJ 2826 An Easy Problem?!(线段交点+简单计算)

    Description It's raining outside. Farmer Johnson's bull Ben wants some rain to water his flowers. Be ...

  6. POJ 2826 An Easy Problem?! --计算几何,叉积

    题意: 在墙上钉两块木板,问能装多少水.即两条线段所夹的中间开口向上的面积(到短板的水平线截止) 解法: 如图: 先看是否相交,不相交肯定不行,然后就要求出P与A,B / C,D中谁形成的向量是指向上 ...

  7. POJ 2826 An Easy Problem?! 好的标题

    受该两块木板以形成槽的效果.Q槽可容纳雨水多,注意雨爆跌,思想是非常easy,分类讨论是有点差. 1.假定两条线段不相交或平行,然后再装0: 2.有一个平行x轴.连衣裙0. 3.若上面覆盖以下的,装0 ...

  8. POJ 1152 An Easy Problem! (取模运算性质)

    题目链接:POJ 1152 An Easy Problem! 题意:求一个N进制的数R.保证R能被(N-1)整除时最小的N. 第一反应是暴力.N的大小0到62.发现当中将N进制话成10进制时,数据会溢 ...

  9. [POJ] 2453 An Easy Problem [位运算]

    An Easy Problem   Description As we known, data stored in the computers is in binary form. The probl ...

随机推荐

  1. HDU 1241 Oil Deposits【DFS】

    解题思路:第一道DFS的题目--- 参看了紫书和网上的题解-- 在找到一块油田@的时候,往它的八个方向找,直到在能找到的范围内没有油田结束这次搜索 可以模拟一次DFS,比如说样例 在i=0,j=1时, ...

  2. vue如何给它的data值赋值

    activeDisplay的值如何改变 用$set();方法 vm.$set('b', 2) 或者 Vue.set(data, 'c', 3) this.someObject = Object.ass ...

  3. Java使用HttpURLConnection上传文件(转)

    从普通Web页面上传文件很简单,只需要在form标签叫上enctype="multipart/form-data"即可,剩余工作便都交给浏览器去完成数据收集并发送Http请求.但是 ...

  4. LCT笔记

    先存个代码 #include<iostream> #include<cstring> #include<cstdio> #include<cmath> ...

  5. UVA-12186 Another Crisis 树形dp

    题目链接:https://cn.vjudge.net/problem/UVA-12186 题意 给出n, T和一棵树,树上每个节点需要选择T%个直属子节点. 问根节点一共需要选择几个节点. 思路 思路 ...

  6. 写入~/.bashrc 文件

    1.进入~/.bashrc 文件 vim ~/.bashrc 2.按下I键,然后按Enter键 加入路径 3.按ESC键退出,再按:wq! 保存即可.

  7. Qt之图形(渐变填充)

    简述 QGradient可以和QBrush组合使用,来指定渐变填充. Qt目前支持三种类型的渐变填充: QLinearGradient:显示从起点到终点的渐变. QRadialGradient:以圆心 ...

  8. 很好的DP思路,字符串比较次数

    题目: https://leetcode.com/problems/distinct-subsequences/?tab=Description 一般没有明显思路的情况下,都要想想DP,用下Divid ...

  9. vim 插件之solarized

    solarized 其实算不上严格的插件,它只是一个主题,这个主题看起来还是很不错的.有一点,因为vim的最终效果还跟ubuntu终端配色有关,所以我们还需要进行其他的设置.具体过程如下 1.更改终端 ...

  10. MVC获取当前Controller/Action名称

    1.视图中获取: var actionName=ViewContext.RouteData.Values["action"].ToString().ToLower(); var c ...