Pytorch Code积累
15个重要Python面试题 测测你适不适合做Python?
torch.
squeeze()
Returns a tensor with all the dimensions of input
of size 1 removed.
torch.
unsqueeze
(input, dim, out=None) → Tensor- Returns a new tensor with a dimension of size one inserted at the specified position.
Python 3:filter()
filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。
该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
Gensim
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。简单地说,Gensim主要处理文本数据,对文本数据进行建模挖掘。
https://blog.csdn.net/HuangZhang_123/article/details/80326363
traceback
捕获并打印异常,可以输出哪个文件哪个函数哪一行报的错。
@classmethod,@staticmethod,@property
torch.max()
__call__
在类中实现该方法,一个类实例可以变成一个可调用对象。
代码出处:https://www.cnblogs.com/superxuezhazha/p/5793536.html
更多特殊函数: https://www.cnblogs.com/xiao987334176/p/8884002.html#autoid-0-1-0
IoU(Intersection over Union)的计算
def IOU(xywh1, xywh2):
x1, y1, w1, h1 = xywh1
x2, y2, w2, h2 = xywh2
dx = min(x1+w1, x2+w2) - max(x1, x2)
dy = min(y1+h1, y2+h2) - max(y1, y2)
intersection = dx * dy if (dx >=0 and dy >= 0) else 0.
union = w1 * h1 + w2 * h2 - intersection
return (intersection / union)
其中(x1,y1),(x2,y2)分别为两个矩阵左下角的顶点,w,h为宽和高。
xml解析
https://www.cnblogs.com/zqchen/articles/3936805.html
layer of model
model.children()
returns an iterable of high-level layers present in model
.
model.named_children()
returns an iterable of two-element tuples, where the first element is the name of the high-level layer and the second element is the high-level layer.
inception loss
if is_inception and phase == 'train':
# From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4*loss2
inception_v3 requires the input size to be (299,299), whereas all of the other models expect (224,224).
详解Pytorch中的网络构造(nn.Module)
https://zhuanlan.zhihu.com/p/53927068
affine_grad和grid_sample
https://www.jianshu.com/p/723af68beb2e
torch.gather
torch.cat
.view() : reshape a tensor.
By default, user created Tensors have 'requires_grad = False'
.requires_grad_() 和 .detach()
torch.nn.
ReplicationPad2d
(padding)
Pads the input tensor using replication of the input boundary.
torch.tensor(np_array):
.numpy():Converting a Torch Tensor to a NumPy Array
.from_numpy: Converting NumPy Array to Torch Tensor
tensor_b is a different view (interpretation) of the same data present in the underlying storage
torch.stack: 增加新的维度做堆叠
torch.masked_select :在训练阶段,损失函数通常需要进行mask操作,因为一个batch中句子的长度通常是不一样的,一个batch中不足长度的位置需要进行填充(pad)补0,最后生成句子计算loss时需要忽略那些原本是pad的位置的值,即只保留mask中值为1位置的值,忽略值为0位置的值
Python标准库(3.x): itertools库
https://www.cnblogs.com/tp1226/p/8453564.html
Python标准库(3.x): 内建函数
https://www.cnblogs.com/tp1226/p/8446503.html
torch.einsum:
https://www.jqr.com/article/000481
Scikit-Learn中TF-IDF权重计算方法主要用到两个类:CountVectorizer和TfidfTransformer
Pytorch Code积累的更多相关文章
- Iris Classification on PyTorch
Iris Classification on PyTorch code # -*- coding:utf8 -*- from sklearn.datasets import load_iris fro ...
- (转载)PyTorch代码规范最佳实践和样式指南
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...
- 使用PyTorch构建神经网络以及反向传播计算
使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在 ...
- 实践torch.fx第一篇——基于Pytorch的模型优化量化神器
第一篇--什么是torch.fx 今天聊一下比较重要的torch.fx,也趁着这次机会把之前的torch.fx笔记整理下,笔记大概拆成三份,分别对应三篇: 什么是torch.fx 基于torch.fx ...
- 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...
- 【Beta】测试报告
测试计划 一.对新增加的用户注册.登录及访问控制的测试 注册信息的填写 用户名包含纯大小写字母.数字.中文.特殊字符及几种情况的混合 密码包含大小写字母.数字和特殊字符 用户名长度不大于150个字节 ...
- An intriguing failing of convolutional neural networks and the CoordConv solution
An intriguing failing of convolutional neural networks and the CoordConv solution NeurIPS 2018 2019- ...
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization 2019-10-10 10:50:19 Paper ...
- SiamRPN: High Performance Visual Tracking with Siamese Region Proposal Network
High Performance Visual Tracking with Siamese Region Proposal Network 2018-11-26 18:32:02 Paper:http ...
随机推荐
- java 替换json字符串中间的引号保留两边的引号,避免json校验失败
一.json概要 JSON(JavaScript Object Notation, JS 对象标记)-一种轻量级的数据交换标准(相对xml),独立于编程语言.具体以逗号分隔的key:value键值对的 ...
- 【a601】雇佣计划
Time Limit: 1 second Memory Limit: 32 MB [问题描述] 一位管理项目的经理想要确定每个月需要的工人,他知道每月所需的最少工人数.当他雇佣或解雇一个工人时,会有一 ...
- POJ 2104 - 主席树 / 询问莫队+权值分块
传送门 题目大意应该都清楚. 今天看到一篇博客用分块+莫对做了这道题,直接惊呆了. 首先常规地离散化后将询问分块,对于某一询问,将莫队指针移动到指定区间,移动的同时处理权值分块的数字出现次数(单独.整 ...
- Docker上定制CentOS7镜像
原文:Docker上定制CentOS7镜像 前言: 环境:centos7.5 64 位 正文: 第一步:下载centos7镜像 docker pull centos 第二步:建立centos7的容器 ...
- 【16.05%】【codeforces 664B】Rebus
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- AndroidStudio使用properties资源文件
在Android项目开发中,为了一些公用资源使用方便,可以在assets资源文件夹中将需要用到的资源写成.properties或者.json的文件形式,并进行读取使用.在做html5+javascri ...
- C# TimeSpan 时间计算
原文:C# TimeSpan 时间计算 本文告诉大家简单的方法进行时间计算. 实际上使用 TimeSpan 可以做到让代码比较好懂,而代码很简单. 例如我使用下面的代码表示 5 秒 const int ...
- 一款有意思的 Qt 飞行仪表控件
最近在网上偶然发现一款Qt飞行仪表板控件,真的很酷哦! 是一款开源软件, 直接编译运行: 美工还是不错的! 控件操作非常简单: void MainWindow::timerEvent( QTimer ...
- win10 uwp 使用 Matrix3DProjection 进行 3d 投影
原文:win10 uwp 使用 Matrix3DProjection 进行 3d 投影 版权声明:博客已迁移到 http://lindexi.gitee.io 欢迎访问.如果当前博客图片看不到,请到 ...
- python 读写XLS
需要库: xlrd, xlwt, xlutils 导入 import xlrd from xlutils.copy import copy 打开文件 data = xlrd.open_workbook ...