样本是统计推断的依据;

统计推断的基本问题可以分为两大类:

  • 估计问题

    • 点估计,
    • 区间估计
  • 假设检验

1. 点估计

设总体 X 的分布函数 F(x;θ) 的形式已知,θ 是待估参数。X1,X2,…,Xn 是 X 的一个样本,x1,x2,…,xn 是相应的一个样本值。点估计问题就是要构造一个适当的统计量,θ^(X1,X2,…,Xn),用它的观察值 θ^(x1,x2,…,xn) 作为未知参数 θ 的近似值。

  • 称 θ^(X1,X2,…,Xn) 为 θ 的估计量;
  • 称 θ^(x1,x2,…,xn) 为 θ 的估计值;

  • 矩估计法

    设 X 为连续型随机变量,其概率密度为 f(x;θ1,…,θk) ,或 X 为离散型随机变量,其分布律为 P{X=x}=p(x;θ1,…,θk),其中 θ1,…,θk 为待估参数,X1,X2,…,Xn 是来自总体 X 的样本,假设总体 X 的前 k 阶矩为:

    μℓ=∫∞−∞xℓ(x;θ1,…,θk)dx

    样本的矩为:

    Aℓ=1n∑i=1nXℓi
  • 极大似然估计

3. 例题

  • 设总体 X 在 [a,b] 上服从均匀分布,a,b 未知,X1,X2,…,Xn 是来自 X 的样本,试求 a,b 的矩估计量;

    μ1=μ2==a+b2,E(X2)=D(X)+E2(X)(b−a)212+(a+b)24

    解这一方程组得,a=μ1−3(μ2−μ21)−−−−−−−−−√,b=μ1+3(μ2−μ21)−−−−−−−−−√,然后用样本矩 A1⇒μ1,A2⇒μ2(1n∑(Xi−X¯)2=1n∑X2i−X¯2)

    • a^=A1−3(A2−A21)−−−−−−−−−√=X¯−3n(∑iX2i−X¯2)−−−−−−−−−−−−−√
    • b^=A1+3(A2−A21)−−−−−−−−−√=X¯−3n(∑iX2i−X¯2)−−−−−−−−−−−−−√

统计推断(statistical inference)的更多相关文章

  1. 《统计推断(Statistical Inference)》读书笔记——第6章 数据简化原理

    在外行眼里统计学家经常做的一件事就是把一大堆杂七杂八的数据放在一起,算出几个莫名其妙的数字,然后再通过这些数字推理出貌似很靠谱的结论,简直就像是炼金术士用“贤者之石”把一堆石头炼成了金矿.第六章,应该 ...

  2. 《统计推断(Statistical Inference)》读书笔记——第5章 随机样本的性质

    有了前四章知识的铺垫,第五章进入了统计研究的正题——样本的研究.样本可以说是统计学研究中最基本的对象,样本的数学性质也是最重要的研究课题,统计学的一大任务就是从一大堆样本中提取出有价值的知识,正如对原 ...

  3. 《统计推断(Statistical Inference)》读书笔记——第4章 统计分布族

    数据分析工作中最常和多维随机变量打交道,第四章介绍了多维随机变量的基本知识,其中核心概念是条件分布和条件概率.条件分布和条件概率可以抽象出条件期望的概念,在随机分析的研究中,理解随机积分和鞅理论和关键 ...

  4. 《统计推断(Statistical Inference)》读书笔记——第3章 统计分布族

    在科学研究中最重要的两种思维范式是“简化”和“还原”,所谓“简化”是指人依据不太复杂的,可理解的规律认识世界:所谓“还原”是指任何复杂的现象归根结底可以由若干简单的机制解释.各种统计分布族就是统计学中 ...

  5. 《统计推断(Statistical Inference)》读书笔记——第2章 变换与期望

    第二章引入了两个重要问题,随机变量的期望和随机变量的变换.期望又引申出“矩”的概念,矩是统计学理论分析的一个重要关键词,而随机变量的变换是研究复杂统计现象的重要工具.下面是这一章的思维导图

  6. 《统计推断(Statistical Inference)》读书笔记——第1章 概率论

    第一章介绍了基本的概率论知识,以下是这一章的思维导图

  7. 读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)

    Part 1: Moments Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is \[\mu_{n}^{ ...

  8. 统计Go, Go, Go

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢!   结束了概率论,我们数据之旅的下一站是统计.这一篇,是统计的一个小介绍.   统 ...

  9. A Statistical View of Deep Learning (II): Auto-encoders and Free Energy

    A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discrimi ...

随机推荐

  1. 关于浏览器不能执行JavaScrip问题的反思

    今天在一篇博客(http://blog.csdn.net/u011043843/article/details/27959563)的时候,写着用于演示的Javascript代码不能再浏览器执行,非常是 ...

  2. Android5.0(Lollipop) BLE蓝牙4.0+浅析demo连接(三)

    作者:Bgwan链接:https://zhuanlan.zhihu.com/p/23363591来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. Android5.0(L ...

  3. js进阶 12-8 如何知道上一个函数的返回值是什么(如何判断上一个函数是否执行成功)

    js进阶 12-8 如何知道上一个函数的返回值是什么(如何判断上一个函数是否执行成功) 一.总结 一句话总结:event的result属性即可. 1.event的result属性的实际应用场景是什么? ...

  4. Android系统开发(7)——标准I/O与文件锁

    一.常用函数 fopen: FILE *fopen(const char *filename, const char *mode); fread: size_t  fread(void *ptz, s ...

  5. width:100%和width:inherit

    前几天遇到过这么一个问题.我想让子盒子的宽度等于父盒子的宽度.父盒子宽度为一个具体值比如说200px.我将子盒子宽度设为了100%.按道理说应该是可以等于父盒子的宽度的,但结果并没有,而是通栏了.然后 ...

  6. HDU 1408 盐水的故事 数学水题

    http://acm.hdu.edu.cn/showproblem.php?pid=1408 题目: 挂盐水的时候,如果滴起来有规律,先是滴一滴,停一下:然后滴二滴,停一下:再滴三滴,停一下...,现 ...

  7. ZOJ 3204 Connect them 继续MST

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3367 题目大意: 让你求最小生成树,并且按照字典序输出哪些点连接.无解输出-1 ...

  8. Seagate-保修验证(za25shrx)

    保修验证 http://support.seagate.com/customer/zh-CN/warranty_validation.jsp   Seagate   保修验证    End User  ...

  9. js导出报表

    原文链接:https://blog.csdn.net/qq_37936542/article/details/78376156 需求:项目中有一个学生签到模块需要导出每天的签到数据,一开始用poi在后 ...

  10. 体验ArcGIS9.2的历史库功能

    转自原文 体验ArcGIS9.2的历史库功能 ESRI公司于2006年11月9日全球同步发布了历史上重要的软件版本ArcGIS9.2,在该版本中,主要新增了以下四大功能(ESRI田昌莲): 第一大新功 ...