统计推断(statistical inference)
样本是统计推断的依据;
统计推断的基本问题可以分为两大类:
- 估计问题
- 点估计,
- 区间估计
- 假设检验
1. 点估计
设总体 X 的分布函数 F(x;θ) 的形式已知,θ 是待估参数。X1,X2,…,Xn 是 X 的一个样本,x1,x2,…,xn 是相应的一个样本值。点估计问题就是要构造一个适当的统计量,θ^(X1,X2,…,Xn),用它的观察值 θ^(x1,x2,…,xn) 作为未知参数 θ 的近似值。
- 称 θ^(X1,X2,…,Xn) 为 θ 的估计量;
称 θ^(x1,x2,…,xn) 为 θ 的估计值;
矩估计法
设 X 为连续型随机变量,其概率密度为 f(x;θ1,…,θk) ,或 X 为离散型随机变量,其分布律为 P{X=x}=p(x;θ1,…,θk),其中 θ1,…,θk 为待估参数,X1,X2,…,Xn 是来自总体 X 的样本,假设总体 X 的前 k 阶矩为:
μℓ=∫∞−∞xℓ(x;θ1,…,θk)dx样本的矩为:
Aℓ=1n∑i=1nXℓi极大似然估计
3. 例题
设总体 X 在 [a,b] 上服从均匀分布,a,b 未知,X1,X2,…,Xn 是来自 X 的样本,试求 a,b 的矩估计量;
μ1=μ2==a+b2,E(X2)=D(X)+E2(X)(b−a)212+(a+b)24解这一方程组得,a=μ1−3(μ2−μ21)−−−−−−−−−√,b=μ1+3(μ2−μ21)−−−−−−−−−√,然后用样本矩 A1⇒μ1,A2⇒μ2(1n∑(Xi−X¯)2=1n∑X2i−X¯2)
- a^=A1−3(A2−A21)−−−−−−−−−√=X¯−3n(∑iX2i−X¯2)−−−−−−−−−−−−−√
- b^=A1+3(A2−A21)−−−−−−−−−√=X¯−3n(∑iX2i−X¯2)−−−−−−−−−−−−−√
统计推断(statistical inference)的更多相关文章
- 《统计推断(Statistical Inference)》读书笔记——第6章 数据简化原理
在外行眼里统计学家经常做的一件事就是把一大堆杂七杂八的数据放在一起,算出几个莫名其妙的数字,然后再通过这些数字推理出貌似很靠谱的结论,简直就像是炼金术士用“贤者之石”把一堆石头炼成了金矿.第六章,应该 ...
- 《统计推断(Statistical Inference)》读书笔记——第5章 随机样本的性质
有了前四章知识的铺垫,第五章进入了统计研究的正题——样本的研究.样本可以说是统计学研究中最基本的对象,样本的数学性质也是最重要的研究课题,统计学的一大任务就是从一大堆样本中提取出有价值的知识,正如对原 ...
- 《统计推断(Statistical Inference)》读书笔记——第4章 统计分布族
数据分析工作中最常和多维随机变量打交道,第四章介绍了多维随机变量的基本知识,其中核心概念是条件分布和条件概率.条件分布和条件概率可以抽象出条件期望的概念,在随机分析的研究中,理解随机积分和鞅理论和关键 ...
- 《统计推断(Statistical Inference)》读书笔记——第3章 统计分布族
在科学研究中最重要的两种思维范式是“简化”和“还原”,所谓“简化”是指人依据不太复杂的,可理解的规律认识世界:所谓“还原”是指任何复杂的现象归根结底可以由若干简单的机制解释.各种统计分布族就是统计学中 ...
- 《统计推断(Statistical Inference)》读书笔记——第2章 变换与期望
第二章引入了两个重要问题,随机变量的期望和随机变量的变换.期望又引申出“矩”的概念,矩是统计学理论分析的一个重要关键词,而随机变量的变换是研究复杂统计现象的重要工具.下面是这一章的思维导图
- 《统计推断(Statistical Inference)》读书笔记——第1章 概率论
第一章介绍了基本的概率论知识,以下是这一章的思维导图
- 读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)
Part 1: Moments Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is \[\mu_{n}^{ ...
- 统计Go, Go, Go
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 结束了概率论,我们数据之旅的下一站是统计.这一篇,是统计的一个小介绍. 统 ...
- A Statistical View of Deep Learning (II): Auto-encoders and Free Energy
A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discrimi ...
随机推荐
- 【重拾Effective Java】一
之前看这本<Effective Java(第二版)>都是非常早曾经了.这本书确实是本好书.须要细嚼慢咽,每次看都有不同的体验. 在此写博客巩固一下. 第一章.创建和销毁对象 考虑用静态工厂 ...
- swift开发网络篇 - post 请求
/** 所有网络请求,统一使用异步请求! 在今后的开发中,如果使用简单的get/head请求,可以用NSURLConnction异步方法 GET查/POST增/PUT改/DELETE删/HEAD GE ...
- ZOJ 2476 Total Amount 字符串
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1476 题目大意: 给你n串数字组成的字符串,要求输出他们相加的和. 如:n= ...
- Oracle学习(六):子查询
1.知识点:能够对比以下的录屏进行阅读 SQL> --子查询所要解决的问题:问题不能一步求解 SQL> --查询工资比SCOTT高的员工信息 SQL> --(1)使用普通方法 SQL ...
- iOS进阶路线以及进阶书籍
第一,熟悉ARC机制:首先要了解ARC的前世今生.假设了解不清楚会导致两种可能,1,一个对象的引用莫名奇异为空.或失效了.这个一般都能在开发阶段及时发现,由于会导致应用异常.2.导致内存溢出:不了解A ...
- 数据类型总结——Boolean类型(布尔类型)
相关文章 简书原文:https://www.jianshu.com/p/e5c75d4be636 数据类型总结——概述:https://www.cnblogs.com/shcrk/p/9266015. ...
- IfSpeed 带宽计算
http://www.360doc.com/content/11/0304/22/2614615_98214710.shtml http://www.cisco.com/support/zh/477/ ...
- 驱动程序调试方法之printk——自制proc文件(一)
首先我们需要弄清楚proc机制,来看看fs/proc/proc_misc.c这个文件,从入口函数开始看: proc_misc_init(void) #ifdef CONFIG_PRIN ...
- 远程登录DSM,显示“您没有权限使用本项服务?
远程登录DSM,显示“您没有权限使用本项服务?” https://www.chiphell.com/thread-825297-1-1.html 有可能你单位用的是多wan接入.一般synology不 ...
- 【42.07%】【codeforces 558A】Lala Land and Apple Trees
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...