统计推断(statistical inference)
样本是统计推断的依据;
统计推断的基本问题可以分为两大类:
- 估计问题
- 点估计,
- 区间估计
- 假设检验
1. 点估计
设总体 X 的分布函数 F(x;θ) 的形式已知,θ 是待估参数。X1,X2,…,Xn 是 X 的一个样本,x1,x2,…,xn 是相应的一个样本值。点估计问题就是要构造一个适当的统计量,θ^(X1,X2,…,Xn),用它的观察值 θ^(x1,x2,…,xn) 作为未知参数 θ 的近似值。
- 称 θ^(X1,X2,…,Xn) 为 θ 的估计量;
称 θ^(x1,x2,…,xn) 为 θ 的估计值;
矩估计法
设 X 为连续型随机变量,其概率密度为 f(x;θ1,…,θk) ,或 X 为离散型随机变量,其分布律为 P{X=x}=p(x;θ1,…,θk),其中 θ1,…,θk 为待估参数,X1,X2,…,Xn 是来自总体 X 的样本,假设总体 X 的前 k 阶矩为:
μℓ=∫∞−∞xℓ(x;θ1,…,θk)dx样本的矩为:
Aℓ=1n∑i=1nXℓi极大似然估计
3. 例题
设总体 X 在 [a,b] 上服从均匀分布,a,b 未知,X1,X2,…,Xn 是来自 X 的样本,试求 a,b 的矩估计量;
μ1=μ2==a+b2,E(X2)=D(X)+E2(X)(b−a)212+(a+b)24解这一方程组得,a=μ1−3(μ2−μ21)−−−−−−−−−√,b=μ1+3(μ2−μ21)−−−−−−−−−√,然后用样本矩 A1⇒μ1,A2⇒μ2(1n∑(Xi−X¯)2=1n∑X2i−X¯2)
- a^=A1−3(A2−A21)−−−−−−−−−√=X¯−3n(∑iX2i−X¯2)−−−−−−−−−−−−−√
- b^=A1+3(A2−A21)−−−−−−−−−√=X¯−3n(∑iX2i−X¯2)−−−−−−−−−−−−−√
统计推断(statistical inference)的更多相关文章
- 《统计推断(Statistical Inference)》读书笔记——第6章 数据简化原理
在外行眼里统计学家经常做的一件事就是把一大堆杂七杂八的数据放在一起,算出几个莫名其妙的数字,然后再通过这些数字推理出貌似很靠谱的结论,简直就像是炼金术士用“贤者之石”把一堆石头炼成了金矿.第六章,应该 ...
- 《统计推断(Statistical Inference)》读书笔记——第5章 随机样本的性质
有了前四章知识的铺垫,第五章进入了统计研究的正题——样本的研究.样本可以说是统计学研究中最基本的对象,样本的数学性质也是最重要的研究课题,统计学的一大任务就是从一大堆样本中提取出有价值的知识,正如对原 ...
- 《统计推断(Statistical Inference)》读书笔记——第4章 统计分布族
数据分析工作中最常和多维随机变量打交道,第四章介绍了多维随机变量的基本知识,其中核心概念是条件分布和条件概率.条件分布和条件概率可以抽象出条件期望的概念,在随机分析的研究中,理解随机积分和鞅理论和关键 ...
- 《统计推断(Statistical Inference)》读书笔记——第3章 统计分布族
在科学研究中最重要的两种思维范式是“简化”和“还原”,所谓“简化”是指人依据不太复杂的,可理解的规律认识世界:所谓“还原”是指任何复杂的现象归根结底可以由若干简单的机制解释.各种统计分布族就是统计学中 ...
- 《统计推断(Statistical Inference)》读书笔记——第2章 变换与期望
第二章引入了两个重要问题,随机变量的期望和随机变量的变换.期望又引申出“矩”的概念,矩是统计学理论分析的一个重要关键词,而随机变量的变换是研究复杂统计现象的重要工具.下面是这一章的思维导图
- 《统计推断(Statistical Inference)》读书笔记——第1章 概率论
第一章介绍了基本的概率论知识,以下是这一章的思维导图
- 读书笔记 1 of Statistics :Moments and Moment Generating Functions (c.f. Statistical Inference by George Casella and Roger L. Berger)
Part 1: Moments Definition 1 For each integer $n$, the nth moment of $X$, $\mu_n^{'}$ is \[\mu_{n}^{ ...
- 统计Go, Go, Go
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 结束了概率论,我们数据之旅的下一站是统计.这一篇,是统计的一个小介绍. 统 ...
- A Statistical View of Deep Learning (II): Auto-encoders and Free Energy
A Statistical View of Deep Learning (II): Auto-encoders and Free Energy With the success of discrimi ...
随机推荐
- 10.11 android输入系统_补充知识_activity_window_decor_view关系
android里:1个application, 有1个或多个activity(比如支付宝有:首页.财富.口碑.朋友.我的,这些就是activity)1个activity, 有1个window(每个ac ...
- 安装及XShell软件的配置
Linux系统centOS7在虚拟机下的安装及XShell软件的配置 前面的话 本文将详细介绍Linux系统centOS7在虚拟机下的安装 准备工作 [系统下载] 在安装centOS7之前,首先在 ...
- RSA DH
https://www.cnblogs.com/hiflora/archive/2013/07/04/3171775.html http://www.ruanyifeng.com/blog/2013/ ...
- jquery插件课程2 放大镜、多文件上传和在线编辑器插件如何使用
jquery插件课程2 放大镜.多文件上传和在线编辑器插件如何使用 一.总结 一句话总结:插件使用真的还是比较简单的,引包,初始化,配置参数(json),配置数据(json),而后两步不是必须的.而且 ...
- Visual Stdio 环境下使用 GSL (GNU Scientific Library)
Visual Stdio 环境下使用 GSL (GNU Scientific Library) 经測试.这里的方法不适用于VS2015. * 这篇文章有点过时了.建议从以下网址下载能够在 vs 环境下 ...
- ECharts.js 超简单入门(本质canvas)
ECharts.js 超简单入门(本质canvas) 一.总结 一句话总结:echarts这些图标的本质都是canvas. 二.ECharts.js学习(一) 简单入门 EChart.js 简单入门 ...
- js如何实现动态的在表格中添加和删除行?(两种方法)
js如何实现动态的在表格中添加和删除行?(两种方法) 一.总结 1.table元素有属性和一些方法(js使用) 方法一:添加可通过在table的innerHTML属性中添加tr和td来实现 tab.i ...
- 小强的HTML5移动开发之路(44)——JqueryMobile中的按钮
一.链接按钮 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <ti ...
- 使用搜狐Sendcloud的Webapi发送邮件:Jodd和Apache Httpclient
最近,在使用搜狐Sendcloud发邮件. Sendcloud提供http格式的webapi,方便地发送邮件,当然是要付费的. 很早之前,http工具一直用Httpclient,后来觉得jodd ...
- JSON 表达式
JSON语法规则: 数据在名称/值对中: 数据由逗号分隔: 大括号保存对象: 中括号保存数组 1.访问对象值: var myObj,x; myObj = {" ...