net_->ForwardBackward()的大致梳理
net_->ForwardBackward()方法在net.hpp文件中
Dtype ForwardBackward() {
Dtype loss;
Forward(&loss);
Backward();
return loss;
}
首先进入Forward(&loss)
net.cpp
template <typename Dtype>
const vector<Blob<Dtype>*>& Net<Dtype>::Forward(Dtype* loss) {
if (loss != NULL) {
*loss = ForwardFromTo(, layers_.size() - );
} else {
ForwardFromTo(, layers_.size() - );
}
return net_output_blobs_;
}
接着进入*loss = ForwardFromTo(0, layers_.size() - 1)这句话
net.cpp
template <typename Dtype>
Dtype Net<Dtype>::ForwardFromTo(int start, int end) {
CHECK_GE(start, );
CHECK_LT(end, layers_.size());
Dtype loss = ;
for (int i = start; i <= end; ++i) {
for (int c = ; c < before_forward_.size(); ++c) {
before_forward_[c]->run(i);
}
// 一层一层地前向传播,bottom_vecs_[i]是各层的输入输入数据指针,top_vecs_[i]是各层的输出数据指针
Dtype layer_loss = layers_[i]->Forward(bottom_vecs_[i], top_vecs_[i]);
loss += layer_loss;
if (debug_info_) { ForwardDebugInfo(i); }
for (int c = ; c < after_forward_.size(); ++c) {
after_forward_[c]->run(i);
}
}
return loss;
}
再进入Dtype layer_loss = layers_[i]->Forward(bottom_vecs_[i], top_vecs_[i])。首先会进入Layer类的Forward函数
layer.hpp
// Forward and backward wrappers. You should implement the cpu and
// gpu specific implementations instead, and should not change these
// functions.
template <typename Dtype>
inline Dtype Layer<Dtype>::Forward(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
Dtype loss = ;
Reshape(bottom, top);
switch (Caffe::mode()) {
case Caffe::CPU:
// Layer类的虚函数,具体由其不同的派生类作不同的实现,也就是此句将会调用不同网络层的Forward_cpu函数,下面的Forward_gpu同理。
Forward_cpu(bottom, top);
for (int top_id = ; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->cpu_data();
const Dtype* loss_weights = top[top_id]->cpu_diff();
loss += caffe_cpu_dot(count, data, loss_weights);
}
break;
case Caffe::GPU:
Forward_gpu(bottom, top);
#ifndef CPU_ONLY
for (int top_id = ; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->gpu_data();
const Dtype* loss_weights = top[top_id]->gpu_diff();
Dtype blob_loss = ;
caffe_gpu_dot(count, data, loss_weights, &blob_loss);
loss += blob_loss;
}
#endif
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
return loss;
} template <typename Dtype>
inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
switch (Caffe::mode()) {
case Caffe::CPU:
Backward_cpu(top, propagate_down, bottom);
break;
case Caffe::GPU:
Backward_gpu(top, propagate_down, bottom);
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
接下来再看ForwardBackward()中的Backward()
net.cpp
template <typename Dtype>
void Net<Dtype>::Backward() {
// 从最后一层开始反向传播
BackwardFromTo(layers_.size() - , );
if (debug_info_) {
Dtype asum_data = , asum_diff = , sumsq_data = , sumsq_diff = ;
for (int i = ; i < learnable_params_.size(); ++i) {
asum_data += learnable_params_[i]->asum_data();
asum_diff += learnable_params_[i]->asum_diff();
sumsq_data += learnable_params_[i]->sumsq_data();
sumsq_diff += learnable_params_[i]->sumsq_diff();
}
const Dtype l2norm_data = std::sqrt(sumsq_data);
const Dtype l2norm_diff = std::sqrt(sumsq_diff);
LOG(ERROR) << " [Backward] All net params (data, diff): "
<< "L1 norm = (" << asum_data << ", " << asum_diff << "); "
<< "L2 norm = (" << l2norm_data << ", " << l2norm_diff << ")";
}
}
进入BackwardFromTo(layers_.size() - 1, 0)
net.cpp
template <typename Dtype>
void Net<Dtype>::BackwardFromTo(int start, int end) {
CHECK_GE(end, );
CHECK_LT(start, layers_.size());
for (int i = start; i >= end; --i) {
for (int c = ; c < before_backward_.size(); ++c) {
before_backward_[c]->run(i);
}
if (layer_need_backward_[i]) {
// 反向传播过程中,top_vecs_[i]是各层的输入数据指针,bottom_vecs[i]是各层的输出数据指针,与前向传播正好相反
layers_[i]->Backward(
top_vecs_[i], bottom_need_backward_[i], bottom_vecs_[i]);
if (debug_info_) { BackwardDebugInfo(i); }
}
for (int c = ; c < after_backward_.size(); ++c) {
after_backward_[c]->run(i);
}
}
}
进入layers_[i]->Backward(top_vecs_[i], bottom_need_backward_[i], bottom_vecs_[i])
layer.hpp
template <typename Dtype>
inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
switch (Caffe::mode()) {
case Caffe::CPU:
// 与前向传播类似,利用不同派生类的同名函数作出不同层的反向传播的具体实现
Backward_cpu(top, propagate_down, bottom);
break;
case Caffe::GPU:
Backward_gpu(top, propagate_down, bottom);
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
不同层的前向、反向传播的具体实现见下一章节。
net_->ForwardBackward()的大致梳理的更多相关文章
- 带你梳理Jetty自定义ProxyServlet实现反向代理服务
摘要:最近要做一个将K8s中的某组件UI通过反向代理映射到自定义规则的链接地址上,提供给用户访问的需求.所以顺便研究了一下Jetty的ProxyServlet. 本文分享自华为云社区<Jetty ...
- Linux内核笔记--网络子系统初探
内核版本:linux-2.6.11 本文对Linux网络子系统的收发包的流程进行一个大致梳理,以流水账的形式记录从应用层write一个socket开始到这些数据被应用层read出来的这个过程中linu ...
- 【Bugly技术干货】那些年我们用过的显示性能指标
Bugly 技术干货系列内容主要涉及移动开发方向,是由 Bugly 邀请腾讯内部各位技术大咖,通过日常工作经验的总结以及感悟撰写而成,内容均属原创,转载请标明出处. 前言: 注:Google 在自己文 ...
- Android消息机制:Looper,MessageQueue,Message与handler
Android消息机制好多人都讲过,但是自己去翻源码的时候才能明白. 今天试着讲一下,因为目标是讲清楚整体逻辑,所以不追究细节. Message是消息机制的核心,所以从Message讲起. 1.Mes ...
- tair源码分析——leveldb存储引擎使用
分析完leveldb以后,接下来的时间准备队tair的源码进行阅读和分析.我们刚刚分析完了leveldb而在tair中leveldb是其几大存储引擎之一,所以我们这里首先从tair对leveldb的使 ...
- 关闭对话框,OnClose和OnCancel
我们知道,在对话框中,屏蔽ESC键自己主动退出能够选择重载OnCancel为哑函数的方法: void CXXXXDlg::OnCancel() { // TODO: Add ...
- ssm+jsp+自定义标签实现分页,可以通用(前端实现)
近期做了一些分页方面的开发,大致梳理一下 1 jsp页面上关于分页的代码 <tr> <td colspan="9"> <ule1:pagination ...
- netty高级篇(3)-HTTP协议开发
一.HTTP协议简介 应用层协议http,发展至今已经是http2.0了,拥有以下特点: (1) CS模式的协议 (2) 简单 - 只需要服务URL,携带必要的请求参数或者消息体 (3) 灵活 - 任 ...
- 疑问:Spring中构造器、init-method、@PostConstruct、afterPropertiesSet孰先孰后,自动注入发生时间
问题:今天想写一个通用点的方法,根据传入的参数的类型(clazz对象),判断使用哪个mapper来插入mysql数据库. 下面是我的写法: public interface BizNeeqCommon ...
随机推荐
- EOJ 1641/UVa The SetStack Computer
Background from Wikipedia: “Set theory is a branch of mathematics created principally by the German ...
- 协议-网络-安全协议:SSH(安全外壳协议)
ylbtech-协议-网络-安全协议:SSH(安全外壳协议) SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定:SSH 为建立 ...
- python关于文件的操作
总是记不住API.昨晚写的时候用到了这些,但是没记住,于是就索性整理一下吧: python中对文件.文件夹(文件操作函数)的操作需要涉及到os模块和shutil模块. 得到当前工作目录,即当前Pyth ...
- Linux下查看操作系统的位数和系统名称版本信息
Linux下如何明确地查看操作系统的位数 如何知晓操作系统是32位还是64位?这里介绍一种简单的方式: [plain] [root@localhost mysql-5.1.57]# getconf L ...
- Android网络连接监听
接收系统网络服务的广播接收者 public class NetStateReceiver extends BroadcastReceiver { private Handler handler; pu ...
- Coursera Algorithms week1 算法分析 练习测验: Egg drop 扔鸡蛋问题
题目原文: Suppose that you have an n-story building (with floors 1 through n) and plenty of eggs. An egg ...
- Drainage Ditches(网络流(EK算法))
计算最大流,EK算法模板题. #include <stdio.h> #include <string.h> #include <queue> using names ...
- mysql 年龄计算(根据生日字段)
mysql 年龄计算(根据生日字段) year( from_days( datediff( now( ), birthdate))) //获取年龄 now() 当前时间,精确到秒 datediff(b ...
- 除了Google,你还应该试试的8个搜索引擎
在信息高速公路上,我们通过浏览器在web的世界里尽情驰骋.想要成为一个好的驾驶员,掌握方向的能力很重要.这很像是Google在我们生活中扮演的角色,通过它可以找到一个又一个的信息宝藏.Google ...
- Mongo连接远程数据库
mongo IP+Port CrabyterV5 首先这么操作是基于配置了环境变量的,可以参照http://www.cnblogs.com/daiyonghui/p/5209076.html mong ...