题目大意:给出一个数,要求你按一定的规则将这个数变成1

规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子。用D除上这个因子,然后继续按该规则运算。直到该数变成1

问变成1的期望步数是多少

解题思路:递推,设该数为D。有N个因子,各自是1,n1,n2,n3…nn-2,D,

那么选到每一个因子的概率都是1/N,除非选到D,不然选到其它因子的话都要多1步。然后再计算D除以该因子的期望

这就能得到公式了,设dp[D]为数D按规则变成1的期望步数

那么dp[D] = 1/N * (dp[D/1] + 1) + 1 / N * (dp[D/n1] + 1) + 1/ N * (dp[D/n2] + 1) + … + 1/N * (dp[D/nn-2] + 1) + 1/N * (dp[D / D] + 1)

化简得 dp[D] = 1 / (N-1) * (dp[D/n1] + dp[D/n2] + … + dp[D/nn-2] + N)

#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 100010
double dp[maxn]; void init() {
dp[1] = double(0); for(int i = 2; i <= 1e5; i++) {
int cnt = 0;
dp[i] = 0.0;
for(int j = 1; j * j <= i; j++) {
if(i % j == 0 && i / j != j) {
cnt += 2;
dp[i] += dp[j] + dp[i / j] + 2;
}
if(j * j == i) {
cnt += 1;
dp[i] += dp[j] + 1;
}
}
dp[i] /= (cnt - 1);
}
} int main() {
init();
int test, cas = 1, n;
scanf("%d", &test);
while(test--) {
scanf("%d", &n);
printf("Case %d: %.10lf\n", cas++, dp[n]);
}
return 0;
}

LightOJ - 1038 Race to 1 Again 递推+期望的更多相关文章

  1. Lightoj 1038 - Race to 1 Again (概率DP)

    题目链接: Lightoj  1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少 ...

  2. tyvj P1952 Easy(递推+期望)

    P1952 Easy 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下 ...

  3. LightOJ - 1038 Race to 1 Again —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Foru ...

  4. LightOJ 1038 - Race to 1 Again(期望+DP)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让 ...

  5. Lightoj 1038 - Race to 1 Again【期望+dp】

    题目:戳这里 题意:一个数字n不断迭代地除以自身的因子得到1.求这个过程中操作除法次数的期望. 解题思路: 求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案.因为每个数都有个共同的最终状态1 ...

  6. lightoj 1038 Race to 1 Again

    题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M ...

  7. LightOJ 1038 Race to 1 Again(概率dp+期望)

    https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的 ...

  8. LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)

    题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...

  9. LightOJ 1244 - Tiles 猜递推+矩阵快速幂

    http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...

随机推荐

  1. Django REST Framework 数码宝贝 - 3步进化 - 混合类 -->

    读了我这篇博客, 你会刷新对面对对象的认知, 之前的面对对象都是LJ~~~ 表结构 class Publisher(models.Model): name = models.CharField(max ...

  2. 多个 WindowsFormsHost 叠加顺序调整

    原文:多个 WindowsFormsHost 叠加顺序调整 工作中遇到多个 WindowsFormsHost 包装的控件叠加顺序的调整问题,用了 BingToFront 和 BringToBack,不 ...

  3. Ubuntu 安装wps-office

    本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50288483 本人的ubuntu系统是 ...

  4. HDU 3723

    把向上看成+1,向下看成-1.可以知道符合卡特兰数的一般解释了.记作Can(i) 中间平过的即是0.亦即是C(n,2*i),i表示向上的数. 于是总的就是sum(C(n,2*i)*Can(i)),i从 ...

  5. android 读取xml

    在有些应用中,有一点小数据.直接存储在XML就是.实现较为简单, 1.xml文件放入asset目录.结构如: <?xml version="1.0" encoding=&qu ...

  6. eclipse 设置代码大小和布局里面代码大小

    Eclipse字体大小调整: Window /  Preferences / General / Appearance / ColorsAnd Fonts .在右边的对话框里选择Java – Java ...

  7. ORA-1157错误解决

    一.错误描述 ORA-1157, "cannot identify/lock data file %s - see DBWR trace file" 引起的原因: 因为数据文件已经 ...

  8. mount ntfs 失败解决办法

    在双系统中,ntfs可能会应为windows的缓存而挂载失败.可用下面命令修复. Use ntfsfix in the terminal, even if you can't access Windo ...

  9. Spring mvc <mvc:resources ***/> 作用

    <!-- 配置静态资源,直接映射到对应的文件夹,不被DispatcherServlet处理,3.04新增功能,需要重新设置spring-mvc-3.0.xsd --> 如在页面需要导入其它 ...

  10. css3 字体、2D转换、3D转换

    学习篇之CSS3 字体.2D转换.3D转换 一.字体 @font-face 将字体文件存放到 web 服务器上,通过CSS3 @font-face规则中定义,它会在需要时被自动下载到用户的计算机上. ...