D. Make a Permutation!

Ivan has an array consisting of n elements. Each of the elements is an integer from 1 to n.

Recently Ivan learned about permutations and their lexicographical order. Now he wants to change (replace) minimum number of elements in his array in such a way that his array becomes a permutation (i.e. each of the integers from 1 to n was encountered in his array exactly once). If there are multiple ways to do it he wants to find the lexicographically minimal permutation among them.

Thus minimizing the number of changes has the first priority, lexicographical minimizing has the second priority.

In order to determine which of the two permutations is lexicographically smaller, we compare their first elements. If they are equal — compare the second, and so on. If we have two permutations x and y, then x is lexicographically smaller if xi < yi, where i is the first index in which the permutations x and y differ.

Determine the array Ivan will obtain after performing all the changes.

Input

The first line contains an single integer n (2 ≤ n ≤ 200 000) — the number of elements in Ivan's array.

The second line contains a sequence of integers a1, a2, ..., an (1 ≤ ai ≤ n) — the description of Ivan's array.

Output

In the first line print q — the minimum number of elements that need to be changed in Ivan's array in order to make his array a permutation. In the second line, print the lexicographically minimal permutation which can be obtained from array with q changes.

Examples
Input
4
3 2 2 3
Output
2
1 2 4 3
Input
6
4 5 6 3 2 1
Output
0
4 5 6 3 2 1
Input
10
6 8 4 6 7 1 6 3 4 5
Output
3
2 8 4 6 7 1 9 3 10 5
Note

In the first example Ivan needs to replace number three in position 1 with number one, and number two in position 3 with number four. Then he will get a permutation [1, 2, 4, 3] with only two changed numbers — this permutation is lexicographically minimal among all suitable.

In the second example Ivan does not need to change anything because his array already is a permutation.

将序列的多余的重复元素用未出现过的元素替换,保证替换次数最少的前提下序列的字典序最小。

贪心

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <cstdlib>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/sTACK:1024000000,1024000000")
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos[j](-1.0)
#define ei exp(1)
#define PI 3.1415926535
#define ios() ios[j]::sync_with_stdio(true)
#define INF 1044266558
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
int a[],vis[],n,ans,k;
set<int>s;
int main()
{
scanf("%d",&n);
memset(vis,,sizeof(vis));
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
vis[a[i]]++;
}
ans=,k=;
for(int i=;i<n;i++)
{
while(vis[k]) k++;
if(vis[a[i]]== && !s.count(a[i])) s.insert(a[i]);
else if(vis[a[i]]== && s.count(a[i])) a[i]=k,vis[k]=,ans++;
else if(vis[a[i]]>)
{
if(!s.count(a[i]))
{
if(a[i]<k) vis[a[i]]--,s.insert(a[i]);
if(a[i]>k) vis[a[i]]--,a[i]=k,vis[k]=,ans++;
}
else
{
a[i]=k;
vis[k]=;
ans++;
}
}
s.insert(a[i]);
}
printf("%d\n",ans);
for(int i=;i<n;i++)
{
if(i) printf(" ");
printf("%d",a[i]);
}
printf("\n");
return ;
}

Coderfroces 864 D. Make a Permutation!的更多相关文章

  1. Coderfroces 864 E. Fire(01背包+路径标记)

    E. Fire http://codeforces.com/problemset/problem/864/E Polycarp is in really serious trouble — his h ...

  2. Codeforces Round #436 (Div. 2)【A、B、C、D、E】

    Codeforces Round #436 (Div. 2) 敲出一身冷汗...感觉自己宛如智障:( codeforces 864 A. Fair Game[水] 题意:已知n为偶数,有n张卡片,每张 ...

  3. Codeforces Round #436 (Div. 2)D. Make a Permutation! 模拟

    D. Make a Permutation! time limit per test: 2 seconds memory limit per test: 256 megabytes input: st ...

  4. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  6. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  7. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  8. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  9. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. 洛谷 P2049 魔术棋子

    P2049 魔术棋子 题目描述 在一个M*N的魔术棋盘中,每个格子中均有一个整数,当棋子走进这个格子中,则此棋子上的数会被乘以此格子中的数.一个棋子从左上角走到右下角,只能向右或向下行动,请问此棋子走 ...

  2. cocos2dx 使用spine制作骨骼动画

    刚刚接触骨骼动画,所以写一篇文章记录. 1.首先先画好人物的每一个部件: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fon ...

  3. 【LeetCode】Merge Intervals 题解 利用Comparator进行排序

    题目链接Merge Intervals /** * Definition for an interval. * public class Interval { * int start; * int e ...

  4. 单点登录(二)使用Cookie+File实现单点登录登出(附源代码)

    上一篇文章<单点登录(一)使用Cookie+File实现单点登录>中,我们实现了单点登录的功能. 本文作为上一篇文章的扩展部分,加入"单点登出"功能. 源代码下载:链接 ...

  5. 关于nth-of-type和nth-child的关系

    一开始写样式的时候喜欢全部元素都来个class,后面发现这样一个页面下来很多个class,起名字起到发慌,然后老师说该多用 逻辑关系来写样式,就是这种第几个孩子啊这种,不知道你们有没有这种烦恼,要用的 ...

  6. Reading and writing

    A text file is a sequence of characters stored on a permanent medium like a hard drive, flash memory ...

  7. Failed to start metasploit.service: Unit metasploit.service not found的解释

    不多说,直接上干货! root@kali:~# service metasploit start Failed to start metasploit.service: Unit metasploit ...

  8. Node+Deployd+MongoDB安装问题

    首先:祝大家新年快乐!然后:最近在看一本angular教程,教程里面需要装一些软件(node,deployd,mongodb),当三个装完后在doc命令行下运行项目时出现问题了 mongodb已经按照 ...

  9. dedecms实现表单提交数据到指定的邮箱

    1.http://blog.csdn.net/webnoties/article/details/17219219 2.http://www.jz96.com/451.html 3.https://m ...

  10. Linux下安装使用MySQL

    网上找那些安装教程比较多的版本,版本只要不是太旧就行. 下载mysql 5.6.28 通用版64位二进制版,二进制版相当于windows的安装包,可以直接安装,如果是源码版,还需要编译后再进行安装. ...