D. Make a Permutation!

Ivan has an array consisting of n elements. Each of the elements is an integer from 1 to n.

Recently Ivan learned about permutations and their lexicographical order. Now he wants to change (replace) minimum number of elements in his array in such a way that his array becomes a permutation (i.e. each of the integers from 1 to n was encountered in his array exactly once). If there are multiple ways to do it he wants to find the lexicographically minimal permutation among them.

Thus minimizing the number of changes has the first priority, lexicographical minimizing has the second priority.

In order to determine which of the two permutations is lexicographically smaller, we compare their first elements. If they are equal — compare the second, and so on. If we have two permutations x and y, then x is lexicographically smaller if xi < yi, where i is the first index in which the permutations x and y differ.

Determine the array Ivan will obtain after performing all the changes.

Input

The first line contains an single integer n (2 ≤ n ≤ 200 000) — the number of elements in Ivan's array.

The second line contains a sequence of integers a1, a2, ..., an (1 ≤ ai ≤ n) — the description of Ivan's array.

Output

In the first line print q — the minimum number of elements that need to be changed in Ivan's array in order to make his array a permutation. In the second line, print the lexicographically minimal permutation which can be obtained from array with q changes.

Examples
Input
4
3 2 2 3
Output
2
1 2 4 3
Input
6
4 5 6 3 2 1
Output
0
4 5 6 3 2 1
Input
10
6 8 4 6 7 1 6 3 4 5
Output
3
2 8 4 6 7 1 9 3 10 5
Note

In the first example Ivan needs to replace number three in position 1 with number one, and number two in position 3 with number four. Then he will get a permutation [1, 2, 4, 3] with only two changed numbers — this permutation is lexicographically minimal among all suitable.

In the second example Ivan does not need to change anything because his array already is a permutation.

将序列的多余的重复元素用未出现过的元素替换,保证替换次数最少的前提下序列的字典序最小。

贪心

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <cstdlib>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/sTACK:1024000000,1024000000")
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos[j](-1.0)
#define ei exp(1)
#define PI 3.1415926535
#define ios() ios[j]::sync_with_stdio(true)
#define INF 1044266558
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
int a[],vis[],n,ans,k;
set<int>s;
int main()
{
scanf("%d",&n);
memset(vis,,sizeof(vis));
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
vis[a[i]]++;
}
ans=,k=;
for(int i=;i<n;i++)
{
while(vis[k]) k++;
if(vis[a[i]]== && !s.count(a[i])) s.insert(a[i]);
else if(vis[a[i]]== && s.count(a[i])) a[i]=k,vis[k]=,ans++;
else if(vis[a[i]]>)
{
if(!s.count(a[i]))
{
if(a[i]<k) vis[a[i]]--,s.insert(a[i]);
if(a[i]>k) vis[a[i]]--,a[i]=k,vis[k]=,ans++;
}
else
{
a[i]=k;
vis[k]=;
ans++;
}
}
s.insert(a[i]);
}
printf("%d\n",ans);
for(int i=;i<n;i++)
{
if(i) printf(" ");
printf("%d",a[i]);
}
printf("\n");
return ;
}

Coderfroces 864 D. Make a Permutation!的更多相关文章

  1. Coderfroces 864 E. Fire(01背包+路径标记)

    E. Fire http://codeforces.com/problemset/problem/864/E Polycarp is in really serious trouble — his h ...

  2. Codeforces Round #436 (Div. 2)【A、B、C、D、E】

    Codeforces Round #436 (Div. 2) 敲出一身冷汗...感觉自己宛如智障:( codeforces 864 A. Fair Game[水] 题意:已知n为偶数,有n张卡片,每张 ...

  3. Codeforces Round #436 (Div. 2)D. Make a Permutation! 模拟

    D. Make a Permutation! time limit per test: 2 seconds memory limit per test: 256 megabytes input: st ...

  4. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  6. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  7. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  8. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  9. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. weak和alias

    一.强符号和弱符号 在C语言中,如果多个模块定义同名全局符号时,链接器认为函数和已初始化的全局变量(包括显示初始化为0)是强符号,未初始化的全局变量是弱符号. 根据这个定义,Linux链接器使用下面的 ...

  2. NYIST 531 太空飞行计划

    太空飞行计划 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述        W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利 ...

  3. 传纸条 NOIP2008 洛谷1006 二维dp

    二维dp 扯淡 一道比较基本的入门难度的二维dp,类似于那道方格取数,不过走过一次的点下次不能再走(看提交记录里面好像走过一次的加一次a[i][j]的也AC了,,),我记得当年那道方格取数死活听不懂, ...

  4. UVA 11825 - Hackers&#39; Crackdown 状态压缩 dp 枚举子集

    UVA 11825 - Hackers' Crackdown 状态压缩 dp 枚举子集 ACM 题目地址:option=com_onlinejudge&Itemid=8&page=sh ...

  5. 50个Android开发技巧(09 避免用EditText对日期进行验证)

    我们都知道,在表单中对数据进行验证不但无聊并且easy出错. (原文地址:http://blog.csdn.net/vector_yi/article/details/24424713) 想象一下,一 ...

  6. Java中泛型的各种使用

    Java中的泛型的使用: 1.普通的泛型使用 在使用类的时候后面的<>中的类型就是我们确定的类型. public class MyClass1<T> {//此处定义的泛型是T ...

  7. List<List<model>>如何更快捷的取里面的model?

    访问接口返回数据类型为List<List<model>>,现在想将其中的model插入数据库,感觉一点点循环有点傻,0.0...,各位有没有其他的方法? List<Lis ...

  8. PostgreSQL Replication之第九章 与pgpool一起工作(4)

    9.4 设置复制和负载均衡 要配置pgpool,我们可以简单地使用一个包含一种典型的配置信息的已经存在的样本文件,将它拷贝到我们的配置目录并修改之: $ cp /usr/local/etc/pgpoo ...

  9. GoldenGate 反向切换步骤

    1 事先配置好反向复制链路: 2 停止源端的应用程序; 3 确认源端Capture已捕获所有的Redo信息: GGSCI>info all GGSCI>info ext_app 4 确认源 ...

  10. DELL T430进RAID的方式:, 硬盘损坏后的处理方式

    **DELL T430 新机安装2块硬盘后进RAID的方式: ** 一. BIOS更改 1.改启动方式为RAID mode  : 开机按F2进入BIOS 界面 --->System BIOS - ...