源码地址:https://github.com/fxsjy/jieba

演示地址:http://jiebademo.ap01.aws.af.cm/

特点

1,支持三种分词模式:

a,精确模式,试图将句子最精确地切开,适合文本分析; 
    b,全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; 
    c,搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

2,支持繁体分词

3,支持自定义词典

安装

1,Python 2.x 下的安装

全自动安装 :easy_install jieba 或者 pip install jieba 
半自动安装 :先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install 
手动安装 :将jieba目录放置于当前目录或者site-packages目录 
通过import jieba 来引用

2,Python 3.x 下的安装

目前master分支是只支持Python2.x 的 
Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k

git clone https://github.com/fxsjy/jieba.git
git checkout jieba3k
python setup.py install

算法实现:

基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 
采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 
对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法

功能

功能 1):分词

jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式 
    jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 
    注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode 
    jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list 
代码示例( 分词 )

#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)

Output: 
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 
【精确模式】: 我/ 来到/ 北京/ 清华大学 
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) 
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

功能 2) :添加自定义词典

开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率 
用法:

jieba.load_userdict(file_name) # file_name为自定义词典的路径

词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开 
范例: 
自定义词典:

云计算 5
李小福 2 nr
创新办 3 i
easy_install 3 eng
好用 300
韩玉赏鉴 3 nz

用法示例:

#encoding=utf-8
import sys
sys.path.append("../")
import jieba
jieba.load_userdict("userdict.txt")
import jieba.posseg as pseg test_sent = "李小福是创新办主任也是云计算方面的专家;"
test_sent += "例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类型"
words = jieba.cut(test_sent)
for w in words:
print w result = pseg.cut(test_sent) for w in result:
print w.word, "/", w.flag, ", ", print "\n========" terms = jieba.cut('easy_install is great')
for t in terms:
print t
print '-------------------------'
terms = jieba.cut('python 的正则表达式是好用的')
for t in terms:
print t

之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 
"通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14

功能 3) :关键词提取

jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse

说明

setence为待提取的文本

topK为返回几个TF/IDF权重最大的关键词,默认值为20 
代码示例 (关键词提取)

import sys
sys.path.append('../') import jieba
import jieba.analyse
from optparse import OptionParser USAGE = "usage: python extract_tags.py [file name] -k [top k]" parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args() if len(args) < 1:
print USAGE
sys.exit(1) file_name = args[0] if opt.topK is None:
topK = 10
else:
topK = int(opt.topK) content = open(file_name, 'rb').read() tags = jieba.analyse.extract_tags(content, topK=topK) print ",".join(tags)

功能 4) : 词性标注

标注句子分词后每个词的词性,采用和ictclas兼容的标记法 
用法示例

>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns

功能 5) : 并行分词

原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升 
基于python自带的multiprocessing模块,目前暂不支持windows 
用法:

jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
jieba.disable_parallel() # 关闭并行分词模式

例子:

import urllib2
import sys,time
import sys
sys.path.append("../../")
import jieba
jieba.enable_parallel(4) url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = list(jieba.cut(content)) t2 = time.time()
tm_cost = t2-t1 log_f = open("1.log","wb")
for w in words:
print >> log_f, w.encode("utf-8"), "/" , print 'speed' , len(content)/tm_cost, " bytes/second"

实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。

其他词典

占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 
支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 
下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary('data/dict.txt.big')

模块初始化机制的改变:lazy load (从0.28版本开始)

jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。

import jieba
jieba.initialize() # 手动初始化(可选)

在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子:

#encoding=utf-8
import sys
sys.path.append("../")
import jieba def cuttest(test_sent):
result = jieba.cut(test_sent)
print " ".join(result) def testcase():
cuttest("这是一个伸手不见五指的黑夜。我叫孙悟空,我爱北京,我爱Python和C++。")
cuttest("我不喜欢日本和服。")
cuttest("雷猴回归人间。")
cuttest("工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作")
cuttest("我需要廉租房")
cuttest("永和服装饰品有限公司")
cuttest("我爱北京天安门")
cuttest("abc")
cuttest("隐马尔可夫")
cuttest("雷猴是个好网站") if __name__ == "__main__":
testcase()
jieba.set_dictionary("foobar.txt")
print "================================"
testcase()

python jieba分词工具的更多相关文章

  1. $好玩的分词——python jieba分词模块的基本用法

    jieba(结巴)是一个强大的分词库,完美支持中文分词,本文对其基本用法做一个简要总结. 安装jieba pip install jieba 简单用法 结巴分词分为三种模式:精确模式(默认).全模式和 ...

  2. python jieba分词(结巴分词)、提取词,加载词,修改词频,定义词库 -转载

    转载请注明出处  “结巴”中文分词:做最好的 Python 中文分词组件,分词模块jieba,它是python比较好用的分词模块, 支持中文简体,繁体分词,还支持自定义词库. jieba的分词,提取关 ...

  3. python jieba分词(添加停用词,用户字典 取词频

    中文分词一般使用jieba分词 1.安装 pip install jieba 2.大致了解jieba分词 包括jieba分词的3种模式 全模式 import jieba seg_list = jieb ...

  4. Python jieba 分词

    环境 Anaconda3 Python 3.6, Window 64bit 目的 利用 jieba 进行分词,关键词提取 代码 # -*- coding: utf-8 -*- import jieba ...

  5. jieba分词工具的使用方法

    作为我这样的萌新,python代码的第一步是:#coding=utf-8 环境:python3.5+jieba0.39 一.jieba包安装方法: 方法1:使用conda安装 conda instal ...

  6. python——jieba分词过程

    import jieba """函数2:分词函数""" def fenci(training_data): ""&quo ...

  7. python jieba 分词进阶

    https://www.cnblogs.com/jiayongji/p/7119072.html 文本准备 到网上随便一搜"三体全集",就很容易下载到三体三部曲的全集文本(txt文 ...

  8. python jieba分词小说与词频统计

    1.知识点 """ 1)cut() a) codecs.open() 解决编码问题 b) f.readline() 读取一行,也可以使用f.readlines()读取多行 ...

  9. PyNLPIR python中文分词工具

    官网:https://pynlpir.readthedocs.io/en/latest/  github:https://github.com/tsroten/pynlpir          NLP ...

随机推荐

  1. 洛谷 P2970 [USACO09DEC]自私的放牧Selfish Grazing

    P2970 [USACO09DEC]自私的放牧Selfish Grazing 题目描述 Each of Farmer John's N (1 <= N <= 50,000) cows li ...

  2. C语言:constkeyword、结构体

    前几节内容的解说,主要是内存地址及指针的分析.这一节解说一下easy混淆的keywordconstant及结构体的知识. 一.constkeyword 1. 字符常量的指针 char const *p ...

  3. struts2 异常页面乱码问题

    在 struts.xml 或者 struts.properties 文件里添加 <constant name="struts.locale" value="zh_C ...

  4. Java排序之直接选择排序

    public class SelectSort { public static void selectSort(int [] a){ int min; int temp; if(a==null || ...

  5. Kafka框架基础

    * Kafka框架基础 官网:kafka.apache.org 框架简介 Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kaf ...

  6. RMAN动态视图

    1.V$ARCHIVEG_LOG 显示归档文件在数据库中创建.备份.清除 2.V$BACKUP_CORRUPTION 显示当一个备份集备份时块中发现的坏块 3.V$COPY_CORRUPTION 显示 ...

  7. Win32++:可替代MFC的Windows桌面应用开发框架

    写在前面 有过Win32编程经验的朋友都知道,使用Windows提供的API开发桌面应用是相当繁琐的,创建一个功能简单能接收并处理消息的窗口至少也得几百行代码.创建一个可视化的窗口一般要以下几个步骤: ...

  8. VS2013+PTVS,python编码问题

    1.调试,input('中文'),乱码2.调试,print('中文'),正常3.不调试,input('中文'),正常4.不调试,print('中文'),正常 页面编码方式已经加了"# -- ...

  9. PostgreSQL Replication之第七章 理解Linux高可用(3)

    7.3 高可用软件的历史 有大量的专有的和开源的高可用性软件.专有的例子有:Solaris Cluster (有时称为Sun 集群 or SunCluster), SteelEye LifeKeepe ...

  10. 关于element-ui框架里面table组件的使用

    1.表格的数据放哪里:后台返回的列表数据放到:data后面. 2.每一个列怎么显示数据:返回的列表里面的属性想要在列显示出来,将对应的字段名写到prop后面就行. 3.列表上面想显示序号:{{scop ...