https://www.luogu.org/problem/show?pid=1069#sub

题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家。现在,他正在为一个细胞实

验做准备工作:培养细胞样本。

Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个第 i 种细胞经过 1 秒钟可以分裂为

Si个同种细胞(Si为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,

进行培养。一段时间以后,再把培养皿中的所有细胞平均分入 M 个试管,形成 M 份样本,

用于实验。Hanks 博士的试管数 M 很大,普通的计算机的基本数据类型无法存储这样大的

M 值,但万幸的是,M 总可以表示为 m1的 m2次方,即

M = m1^m2

,其中 m1,m2均为基本

数据类型可以存储的正整数。

注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 4 个细胞,

Hanks 博士可以把它们分入 2 个试管,每试管内 2 个,然后开始实验。但如果培养皿中有 5

个细胞,博士就无法将它们均分入 2 个试管。此时,博士就只能等待一段时间,让细胞们继

续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。

为了能让实验尽早开始,Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚

好可以平均分入 M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细

胞培养,可以使得实验的开始时间最早。

输入输出格式

输入格式:

第一行有一个正整数 N,代表细胞种数。

第二行有两个正整数 m1,m2,以一个空格隔开,

即表示试管的总数 M = m1^m2。

第三行有 N 个正整数,第 i 个数 Si表示第 i 种细胞经过 1 秒钟可以分裂成同种细胞的个

数。

输出格式:

输出文件 cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的

最少时间(单位为秒)。

如果无论 Hanks 博士选择哪种细胞都不能满足要求,则输出整数-1。

输入输出样例

输入样例#1:

1
2 1
3
输出样例#1:

-1
输入样例#2:

2
24 1
30 12
输出样例#2:

2

说明

【输入输出说明】

经过 1 秒钟,细胞分裂成 3 个,经过 2 秒钟,细胞分裂成 9 个,……,可以看出无论怎么分

裂,细胞的个数都是奇数,因此永远不能分入 2 个试管。

【输入输出样例2 说明】

第 1 种细胞最早在3 秒后才能均分入24 个试管,而第2 种最早在2 秒后就可以均分(每

试管144/(241)=6 个)。故实验最早可以在2 秒后开始。

【数据范围】

对于 50%的数据,有m1^m2 ≤ 30000。

对于所有的数据,有1 ≤N≤ 10000,1 ≤m1 ≤ 30000,1 ≤m2 ≤ 10000,1 ≤ Si ≤ 2,000,000,000。

NOIP 2009 普及组 第三题

对m1质因数分解,对于每个si进行判断

如果si没有m1中的质因子,则此si无效

 反之 计算此si 需要的时间    (m1==1时  可以特判输出0)

 #include <algorithm>
#include <cstdio> using namespace std; const int N();
const int M();
const int INF(0x7fffffff);
int n,m1,m2,cnt;
struct Node
{
int num,pri;
}node[M]; int num[N];
int Get(int x)
{
for(int i=;i<=cnt;i++)
{
num[i]=;
for(;x%node[i].pri==;x/=node[i].pri) num[i]++;
}
int ret=;
for(int i=;i<=cnt;i++)
{
if(!num[i]) return INF;
int tmp=node[i].num/num[i];
if(tmp*num[i]<node[i].num) tmp++;
ret=max(ret,tmp);
}
return ret;
} int main()
{
scanf("%d%d%d",&n,&m1,&m2);
if(m1==)
{
puts("");
return ;
}
for(int i=;i*i<=m1;i++)
if(m1%i==)
{
node[++cnt].pri=i;
for(;m1%i==;m1/=i) node[cnt].num++;
}
if(m1>) node[++cnt].pri=m1,node[cnt].num=;
for(int i=;i<=cnt;i++) node[i].num*=m2;
int ans=INF;
for(int s,i=;i<=n;i++)
{
scanf("%d",&s);
ans=min(ans,Get(s));
}
ans==INF?printf("-1"):printf("%d",ans);
return ;
}

迷茫中。。

洛谷—— P1069 细胞分裂的更多相关文章

  1. 洛谷 P1069 细胞分裂 解题报告

    P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...

  2. 【洛谷P1069 细胞分裂】

    题目链接 首先,光看题就觉得它很扯淡(你哪里来这么多的钱来买试管) 根据某位已经ak过ioi的名为ych的神仙说(一看就是数学题,一看就需要因式分解,emm,我果然没有发现美的眼睛qwq) 那么我们就 ...

  3. 洛谷 P1069 解题报告

    P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...

  4. P1069 细胞分裂

    P1069 细胞分裂 考虑质因数分解 先将m1,质因数分解后再根据数学定理将所有质数的质数全乘m2 然后将输入的数据相同处理,再判断 顺便说一下判断规矩 1肯定不行 如果分解后有没有m1质因数分解中的 ...

  5. P1069 细胞分裂——数学题,质因数分解

    P1069 细胞分裂 我们求的就是(x^k)|(m1^m2) k的最小值: 先给m1分解质因数,再给每个细胞分解: 如果m1有的质因数,细胞没有就跳过: 否则就记录答案: 注意整数除法下取整的原则: ...

  6. 细胞分裂(洛谷 P1069)

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...

  7. luogu P1069 细胞分裂

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...

  8. Luogu P1069细胞分裂【分解质因数/数论】By cellur925

    题目传送门 发现这题真的坑超多啊...调了一晚上终于过了...我好菜啊qwq. 题意说的比较明白,让你求满足(si^k)%(m1^m2)==0的最小k值.然后看数据范围我们知道,我们肯定不能暴力的判断 ...

  9. Solution -「HNOI 2007」「洛谷 P3185」分裂游戏

    \(\mathcal{Description}\)   Link.   给定 \(n\) 堆石子,数量为 \(\{a_n\}\),双人博弈,每轮操作选定 \(i<j\le k\),使 \(a_i ...

随机推荐

  1. 【Python】【Head First Python】【chapter1】1 - 导入模块

    导入模块 导入模块有三种方法,以导入sys模块为例: 第一是import module 形式导入 import sys location = sys.stdout 第二是from module imp ...

  2. iOS 热门高效开源库集锦,收藏备用

    一.推荐使用的第三方库 1:基于响应式编程思想的ReactiveCocoa 地址:https://github.com/ReactiveCocoa/ReactiveCocoa 2:iOS解耦与组件化开 ...

  3. 使用Linux遇到的一些问题和解决方案

    1.如何在重装系统或换机器以后继续使用以前用过的thunderbird邮件 执行命令thunderbird -ProfileManager以后会打开一个配置用户界面. 在里面添加一个新的配置,然后选择 ...

  4. android启动模式对于体验的影响

    说到Android的启动模式.懂Android的人肯定都懂. 通过设置启动模式我们不仅能够节省内存的使用.还能达到更好的体验,比方我们打开一个应用,点击home键回到主界面的时候程序是没有被kill掉 ...

  5. VisualRoute for Mac OS 体验

    VisualRoute 网络路径结点回溯分析工具,以在世界地图上显示连结的路径的方式,让你知道当无法连上某些IP时的真正问题所在.VisualRoute将traceroute.ping以及Whois等 ...

  6. spark network-common

    概述 Spark底层使用netty作为节点间通信的桥梁.其实现在common/network-common包中.common/network-common包主要是对netty进行了一层封装,主要是定义 ...

  7. Vue给元素添加样式

    Vue中使用样式 绑定css 数组 <style> .red{ color:red } .thin{ font-size:18px } </style> <h1 :cla ...

  8. LuoguP4012 深海机器人问题(费用流)

    题目描述 深海资源考察探险队的潜艇将到达深海的海底进行科学考察. 潜艇内有多个深海机器人.潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生物标本.沿途生 ...

  9. 【Codeforces Round #456 (Div. 2) A】Tricky Alchemy

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 统计需要的个数. 不够了,就买. [代码] #include <bits/stdc++.h> #define ll lo ...

  10. Oracle学习总结(8)—— 面向程序员的数据库访问性能优化法则

    特别说明: 1.  本文只是面对数据库应用开发的程序员,不适合专业DBA,DBA在数据库性能优化方面需要了解更多的知识: 2.  本文许多示例及概念是基于Oracle数据库描述,对于其它关系型数据库也 ...