【34.14%】【BZOJ 3110】 [Zjoi2013]K大数查询
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 5375 Solved: 1835
[Submit][Status][Discuss]
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
1
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1
的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是
1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3
大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
【题解】
树套树。一个权值的线段树套一个区间的线段树。
比如[4,6]这个权值范围->第一层
我们就在第二层里面获得在所有的区间[l,r]内有多少个在[4,6]范围内的数。
即权值范围为[be,en],然后求出在任意的[l,r]内有多少个权值范围在[be,en]内的数。
最后二分获取答案即可。
二分的时候枚举答案;
获取中点m=(l+r)>>1;
看看在m+1..r这个权值范围内,且区间在【L,R】的数字有多少个;
然后做相应的事情
看代码吧
#include <cstdio>
const int MAXN = 50000+100;
const int MAXM = MAXN * 16 * 16;
int n, m,L,R,c;
int root[MAXN<<2] = { 0 },cnt,lc[MAXM],rc[MAXM];
long long sum[MAXM],lz[MAXM];
void modify(int &rt, int begin, int end)
{
if (!rt)
rt = ++cnt;
if (L <= begin && end <= R)
{
sum[rt] += end - begin + 1;
lz[rt] ++;
return;
}
int m = (begin + end) >> 1;
if (L <= m)
modify(lc[rt], begin, m);
if (m < R)
modify(rc[rt], m + 1, end);
sum[rt] = sum[lc[rt]] + sum[rc[rt]] + lz[rt] * (end - begin + 1);
}
void up_data()
{
int l = 1, r = n, now = 1;//now代表的是l..r这个权值范围所代表的第二层线段树的根节点
while (l != r)
{
int m = (l + r) >> 1;
modify(root[now], 1, n);//虽然修改的是部分区间,但是整个大区间都会变化
//即now这个根节点所代表的权值区间,它的二层范围区间内的数字的个数会发生变化
if (c <= m)
r = m, now <<= 1;
else
l = m + 1, now = now << 1 | 1;
}
modify(root[now], 1, n);
}
int min(int a, int b)
{
return a > b ? b : a;
}
int max(int a, int b)
{
return a > b ? a : b;
}
long long cal(int rt, int begin, int end)
{
if (!rt)
return 0;
if (L <= begin && end <= R)
return sum[rt];
long long temp1 = 0, temp2 = 0;
int m = (begin + end) >> 1;
if (L <= m)
temp1 = cal(lc[rt], begin, m);
if (m < R)
temp2 = cal(rc[rt], m + 1, end);
return temp1 + temp2 + lz[rt] * (min(end, R) - max(L, begin)+1);
}
int query()
{
int l = 1, r = n, now = 1;
while (l != r)
{
int m = (l + r) >> 1;
long long temp = cal(root[now << 1|1], 1, n);//计算比m大的数有多少个.(满足在【L,R】区间)
if (c <= temp)
l = m + 1, now = now << 1 | 1;
else//c>temp
r = m, now = now << 1, c -= temp;
}
return l;
}
int main()
{
//freopen("F:\\rush.txt", "r", stdin);
scanf("%d%d", &n, &m);
int opt;
for (int i = 1; i <= m; i++)
{
scanf("%d%d%d%d", &opt, &L, &R, &c);
if (opt == 1)
up_data();
else
printf("%d\n", query());
}
return 0;
}
【34.14%】【BZOJ 3110】 [Zjoi2013]K大数查询的更多相关文章
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- 树套树专题——bzoj 3110: [Zjoi2013] K大数查询 & 3236 [Ahoi2013] 作业 题解
[原题1] 3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 978 Solved: 476 Descri ...
- bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1384 Solved: 629[Submit][Stat ...
- BZOJ 3110: [Zjoi2013]K大数查询( 树状数组套主席树 )
BIT+(可持久化)权值线段树, 用到了BIT的差分技巧. 时间复杂度O(Nlog^2(N)) ---------------------------------------------------- ...
- BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MB Submit: 418 Solved: 235 [ Submit][ ...
- BZOJ 3110 [Zjoi2013]K大数查询(整体二分)
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 11654 Solved: 3505[Submit][St ...
- [BZOJ 3110] [Zjoi2013] K大数查询 【树套树】
题目链接: BZOJ - 3110 题目分析 这道题是一道树套树的典型题目,我们使用线段树套线段树,一层是区间线段树,一层是权值线段树.一般的思路是外层用区间线段树,内层用权值线段树,但是这样貌似会很 ...
- BZOJ 3110 [Zjoi2013]K大数查询 (CDQ分治+树状数组)
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...
- bzoj 3110 [Zjoi2013]K大数查询——线段树套线段树(标记永久化)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 第一道线段树套线段树! 第一道标记永久化! 为什么为什么写了两个半小时啊…… 本想线段 ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
随机推荐
- sql查看依赖关系
select OBJECT_NAME(object_id) as name,object_NAME(referenced_major_id) as ref from sys.sql_dependenc ...
- 1.21 Python基础知识 - python常用模块-2
一.xml 什么是 XML? XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 X ...
- Android 在滚动列表中实现视频的播放(ListView & RecyclerView)
这片文章基于开源项目: VideoPlayerManager. 所有的代码和示例都在那里.本文将跳过许多东西.因此如果你要真正理解它是如何工作的,最好下载源码,并结合源代码一起阅读本文.但是即便是没有 ...
- 18/9/9牛客网提高组Day1
牛客网提高组Day1 T1 中位数 这好像是主席树??听说过,不会啊... 最后只打了个暴力,可能是n2logn? 只过了前30% qwq #include<algorithm> #in ...
- SpringMVC 传递相同名称的参数的最佳方法
华为云4核8G,高性能云服务器,免费试用 >>> SpringMVC 多个对象的相同字段参数传递解决方案,在SpringMVC中,有时需要传递多个对象(除了Model和web元素 ...
- [Javascript] Classify text into categories with machine learning in Natural
In this lesson, we will learn how to train a Naive Bayes classifier or a Logistic Regression classif ...
- Codeforces_GYM_100741 A
http://codeforces.com/gym/100741/problem/A A. Queries time limit per test 0.25 seconds memory limit ...
- NAACL 2013 Paper Mining User Relations from Online Discussions using Sentiment Analysis and PMF
中文简单介绍:本文对怎样基于情感分析和概率矩阵分解从网络论坛讨论中挖掘用户关系进行了深入研究. 论文出处:NAACL'13. 英文摘要: Advances in sentiment analysis ...
- 微服务实践(七):从单体式架构迁移到微服务架构 - DockOne.io
原文:微服务实践(七):从单体式架构迁移到微服务架构 - DockOne.io [编者的话]这是用微服务开发应用系列博客的第七篇也是最后一篇.第一篇中介绍了微服务架构模式,并且讨论了微服架构的优缺点: ...
- Machine Learning With Spark学习笔记(提取10万电影数据特征)
注:原文中的代码是在spark-shell中编写运行的,本人的是在eclipse中编写运行,所以结果输出形式可能会与这本书中的不太一样. 首先将用户数据u.data读入SparkContext中.然后 ...