【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
After Vitaly was expelled from the university, he became interested in the graph theory.
Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.
Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.
Two ways to add edges to the graph are considered equal if they have the same sets of added edges.
Since Vitaly does not study at the university, he asked you to help him with this task.
Input
The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.
Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.
It is guaranteed that the given graph doesn’t contain any loops and parallel edges. The graph isn’t necessarily connected.
Output
Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.
Examples
input
4 4
1 2
1 3
4 2
4 3
output
1 2
input
3 3
1 2
2 3
3 1
output
0 1
input
3 0
output
3 1
Note
The simple cycle is a cycle that doesn’t contain any vertex twice.
【题目链接】:http://codeforces.com/contest/557/problem/D
【题解】
要存在一个奇数环。
则最多就添加3条边(3条边一定能构成一个环!)。
1.看看整张图变成了几个连通块,如果每个连通块里面的点的个数都为1,则添加边数为3,方案数为C(n,3)=n*(n-1)*(n-2)/6,这个时候对应的情况是边数m=0;->”3 C(N,3)”
2.每个连通块里面的点的个数的最大值为2;则连通块里面点的个数为2的情况就对应这个连通块里面只有一条边,而一条边由两个点构成,这条边上的两个点分别与其余n-2个点构成n-2个环(都是3个点的环),边的个数m就对应了连通块里面点的个数为2的情况,则方案为m*(n-2);->”2 m*(n-2)”
下面这种情况不是奇环(而是偶环),所以”2对2的情况可以排除”;
3.除了以上两种情况外;
如果在某个连通块里面不能进行二分图染色->则存在奇环。直接输出”0 1”;
( 有奇环就不能完成二分图染色);
如果都能进行二分图染色;
则记录每个连通块里面白点(0)和黑点(1)的个数;
设为cnt[0]和cnt[1];
则每有一个联通块;
答案递增C(cnt[0],2)+C(cnt[1],2);
可以看到每两个0之间连一条边都能构成一个奇数环;
很有趣的性质.
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x)
#define pri(x) printf("%d",x)
#define prl(x) printf("%I64d",x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int MAXN = 1e5+10;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
int n,m;
int f[MAXN],num[MAXN],cnt[2];
int color[MAXN];
vector <int> g[MAXN];
queue <int> dl;
int ff(int x)
{
if (f[x]==x) return x;
else
f[x] = ff(f[x]);
return f[x];
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
memset(color,255,sizeof color);
rei(n);rei(m);
rep1(i,1,n)
f[i] = i,num[i] = 1;
rep1(i,1,m)
{
int x,y;
rei(x);rei(y);
g[x].pb(y);
g[y].pb(x);
int r1 = ff(x),r2 = ff(y);
if (r1!=r2)
{
f[r1]=r2;
num[r2]+=num[r1];
}
}
int ma = 1;
LL ans = 0;
rep1(i,1,n)
{
int r = ff(i);
ma = max(ma,num[r]);
}
if (ma == 1)
{
printf("3 %I64d\n",1LL*n*(n-1)*(n-2)/6);
return 0;
}
else
if (ma==2)
{
printf("2 %I64d\n",1LL*(n-2)*m);
return 0;
}
else
{
rep1(i,1,n)
if (color[i]==-1)
{
memset(cnt,0,sizeof cnt);
color[i] = 0;
cnt[0] = 1;
dl.push(i);
bool ok = true;
while (!dl.empty())
{
int x = dl.front();
dl.pop();
int len = g[x].size();
rep1(j,0,len-1)
{
int y = g[x][j];
if (y==x) continue;
if (color[y]==-1)
{
color[y] = 1-color[x];
cnt[color[y]]++;
dl.push(y);
}
else
if (color[y]==color[x])
{
ok = false;
break;
}
}
if (!ok) break;
}
if (!ok)
{
printf("0 1\n");
return 0;
}
if (cnt[0]>=2)
ans+=1LL*cnt[0]*(cnt[0]-1)/2;
if (cnt[1]>=2)
ans+=1LL*cnt[1]*(cnt[1]-1)/2;
}
}
cout <<"1 "<< ans << endl;
return 0;
}
【34.57%】【codeforces 557D】Vitaly and Cycle的更多相关文章
- 【 BowWow and the Timetable CodeForces - 1204A 】【思维】
题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...
- codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图
D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input sta ...
- 【57.97%】【codeforces Round #380A】Interview with Oleg
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【24.34%】【codeforces 560D】Equivalent Strings
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【34.88%】【codeforces 569C】Primes or Palindromes?
time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...
- 【codeforces 793D】Presents in Bankopolis
[题目链接]:http://codeforces.com/contest/793/problem/D [题意] 给你n个点, 这n个点 从左到右1..n依序排; 然后给你m条有向边; 然后让你从中选出 ...
- 【codeforces 799D】Field expansion
[题目链接]:http://codeforces.com/contest/799/problem/D [题意] 给你长方形的两条边h,w; 你每次可以从n个数字中选出一个数字x; 然后把h或w乘上x; ...
- 【codeforces 750C】New Year and Rating(做法2)
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- CSUOJ 1554 SG Value
1554: SG Value Time Limit: 5 Sec Memory Limit: 256 MBSubmit: 140 Solved: 35 Description The SG val ...
- C++异常实现与longjmp, setjmp,栈指针EBP, Active Record
这篇讲的不错: http://blog.csdn.net/smstong/article/details/50728022 首先Active Record 然后EBP,ESP等指针 2 通过setjm ...
- javaEE之------Spring-----》 AspectJ注解
前面介绍了下Spring中的切面技术.如今说下採用注解的方式进行切面 首先肯定和之前的一样.须要一个自己主动代理的注解类 AnnotationAwareAspectJAutoProxyCreator ...
- C#解决关闭多线程的form主窗体时抛出ObjectDisposedException 异常
一.现象: 我在主窗体新建线程,使用子线程来处理接收到的数据,并且更新窗体显示内容,但关闭主窗体程序之后就程序就报错,如下所示: 二.分析问题: 由于新建线程的处理函数里边是一直死循环处理数据,虽然窗 ...
- 使用Multiplayer Networking做一个简单的多人游戏例子-1/2
原文地址: http://blog.csdn.net/cocos2der/article/details/51006463 本文主要讲述了如何使用Multiplayer Networking开发多人游 ...
- COGS——T 1786. 韩信点兵
http://www.cogs.pro/cogs/problem/problem.php?pid=1786 ★★★ 输入文件:HanXin.in 输出文件:HanXin.out 简单对比时 ...
- php訪问mysql数据库
PHP訪问Mysql数据库 PHP能够通过mysql接口和mysqli接口訪问mysql数据库. 须要加入mysql和mysqli接口才干訪问mysql数据库. windows下配置amp: a.安装 ...
- bootstrap tab页
---恢复内容开始--- <!DOCTYPE html> <html> <head> <title>Bootstrap 实例</title> ...
- 洛谷 P1551 亲戚
洛谷 P1551 亲戚 题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 题目描 ...
- UIViewController所有API的学习。
<欢迎大家加入iOS开发学习交流群:QQ529560119> /* UIViewController is a generic controller base class tha ...