【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
After Vitaly was expelled from the university, he became interested in the graph theory.
Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.
Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.
Two ways to add edges to the graph are considered equal if they have the same sets of added edges.
Since Vitaly does not study at the university, he asked you to help him with this task.
Input
The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.
Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.
It is guaranteed that the given graph doesn’t contain any loops and parallel edges. The graph isn’t necessarily connected.
Output
Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.
Examples
input
4 4
1 2
1 3
4 2
4 3
output
1 2
input
3 3
1 2
2 3
3 1
output
0 1
input
3 0
output
3 1
Note
The simple cycle is a cycle that doesn’t contain any vertex twice.
【题目链接】:http://codeforces.com/contest/557/problem/D
【题解】
要存在一个奇数环。
则最多就添加3条边(3条边一定能构成一个环!)。
1.看看整张图变成了几个连通块,如果每个连通块里面的点的个数都为1,则添加边数为3,方案数为C(n,3)=n*(n-1)*(n-2)/6,这个时候对应的情况是边数m=0;->”3 C(N,3)”
2.每个连通块里面的点的个数的最大值为2;则连通块里面点的个数为2的情况就对应这个连通块里面只有一条边,而一条边由两个点构成,这条边上的两个点分别与其余n-2个点构成n-2个环(都是3个点的环),边的个数m就对应了连通块里面点的个数为2的情况,则方案为m*(n-2);->”2 m*(n-2)”
下面这种情况不是奇环(而是偶环),所以”2对2的情况可以排除”;
3.除了以上两种情况外;
如果在某个连通块里面不能进行二分图染色->则存在奇环。直接输出”0 1”;
( 有奇环就不能完成二分图染色);
如果都能进行二分图染色;
则记录每个连通块里面白点(0)和黑点(1)的个数;
设为cnt[0]和cnt[1];
则每有一个联通块;
答案递增C(cnt[0],2)+C(cnt[1],2);
可以看到每两个0之间连一条边都能构成一个奇数环;
很有趣的性质.
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x)
#define pri(x) printf("%d",x)
#define prl(x) printf("%I64d",x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int MAXN = 1e5+10;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
int n,m;
int f[MAXN],num[MAXN],cnt[2];
int color[MAXN];
vector <int> g[MAXN];
queue <int> dl;
int ff(int x)
{
if (f[x]==x) return x;
else
f[x] = ff(f[x]);
return f[x];
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
memset(color,255,sizeof color);
rei(n);rei(m);
rep1(i,1,n)
f[i] = i,num[i] = 1;
rep1(i,1,m)
{
int x,y;
rei(x);rei(y);
g[x].pb(y);
g[y].pb(x);
int r1 = ff(x),r2 = ff(y);
if (r1!=r2)
{
f[r1]=r2;
num[r2]+=num[r1];
}
}
int ma = 1;
LL ans = 0;
rep1(i,1,n)
{
int r = ff(i);
ma = max(ma,num[r]);
}
if (ma == 1)
{
printf("3 %I64d\n",1LL*n*(n-1)*(n-2)/6);
return 0;
}
else
if (ma==2)
{
printf("2 %I64d\n",1LL*(n-2)*m);
return 0;
}
else
{
rep1(i,1,n)
if (color[i]==-1)
{
memset(cnt,0,sizeof cnt);
color[i] = 0;
cnt[0] = 1;
dl.push(i);
bool ok = true;
while (!dl.empty())
{
int x = dl.front();
dl.pop();
int len = g[x].size();
rep1(j,0,len-1)
{
int y = g[x][j];
if (y==x) continue;
if (color[y]==-1)
{
color[y] = 1-color[x];
cnt[color[y]]++;
dl.push(y);
}
else
if (color[y]==color[x])
{
ok = false;
break;
}
}
if (!ok) break;
}
if (!ok)
{
printf("0 1\n");
return 0;
}
if (cnt[0]>=2)
ans+=1LL*cnt[0]*(cnt[0]-1)/2;
if (cnt[1]>=2)
ans+=1LL*cnt[1]*(cnt[1]-1)/2;
}
}
cout <<"1 "<< ans << endl;
return 0;
}
【34.57%】【codeforces 557D】Vitaly and Cycle的更多相关文章
- 【 BowWow and the Timetable CodeForces - 1204A 】【思维】
题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...
- codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图
D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input sta ...
- 【57.97%】【codeforces Round #380A】Interview with Oleg
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- 【24.34%】【codeforces 560D】Equivalent Strings
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【34.88%】【codeforces 569C】Primes or Palindromes?
time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...
- 【codeforces 793D】Presents in Bankopolis
[题目链接]:http://codeforces.com/contest/793/problem/D [题意] 给你n个点, 这n个点 从左到右1..n依序排; 然后给你m条有向边; 然后让你从中选出 ...
- 【codeforces 799D】Field expansion
[题目链接]:http://codeforces.com/contest/799/problem/D [题意] 给你长方形的两条边h,w; 你每次可以从n个数字中选出一个数字x; 然后把h或w乘上x; ...
- 【codeforces 750C】New Year and Rating(做法2)
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- javascript进阶课程--第二章--对象
javascript进阶课程--第二章--对象 学习要点 理解面向对象的概念 掌握对象的创建方法 掌握继承的概念和实现方法 基本概念 对象究竟是什么?什么叫面向对象编程? 对象是从我们现实生活中抽象出 ...
- c#的中英文混合字符串截取指定长度,startidx从0开始
//c#的中英文混合字符串截取指定长度,startidx从0开始 by gisoracle@126.com public string getStrLenB(string str, int start ...
- 《一》File 类的介绍
File 类:文件和目录路径名的抽象表示. 注意:File 类只能操作文件的属性,文件的内容是不能操作的. 1.File 类的字段 我们知道,各个平台之间的路径分隔符是不一样的. ①.对于UN ...
- 记阮一峰---JavaScript 标准参考教程之标准库-Object对象
在看到阮大神的-标准库-Object对象时 有个 类型判断类型 方法可能以后会用到.特此记录一下 4.3:toString()的应用:判断数据类型 Object.prototype.toString方 ...
- ftp实现图片上传,文件也类似
本来用得是easyui得控件 点击按钮实现选择图片得 ,但是老板非得要双击图片框实现上传代码....做个简单得记录 前端代码: 首先,<form>表单要加上 enctype="m ...
- 每日技术总结:fly.js,个位数前补零等
01.FLY.JS 文档:https://wendux.github.io/dist/#/doc/flyio/readme 02.微信小程序组件——input属性之cursor-spacing 属性 ...
- 给已有数据的oracle表建立外键关系
PS:这里是给自己做个备忘,下次遇到同类问题的时候,方便查找: 客户在有主外键关系的2张表进行页面删除时报错已有子记录,运维后台处理的时候应该找出相应的数据,先删除子记录,在删主表记录:但客户要的急, ...
- 原生js大总结六
051.如何打印当前浏览器的版本等信息 navigator.userAgent 返回包含浏览器版本等信息的字符串 ,常用于判断浏览器版本及使用设备(PC或者移动端 052 .在浏览器地址栏 ...
- Project Euler 516 5-smooth totients (数论)
题目链接: https://projecteuler.net/problem=516 题目: \(5\)-smooth numbers are numbers whose largest prime ...
- TabControl控件重绘
原文地址:http://www.codeproject.com/Articles/91387/Painting-Your-Own-Tabs-Second-Edition 在网上看到重绘TabContr ...