Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5

1

3

1

5

2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

 
题意:给你一组序列 只能从左端点 或者 右端点 选取一个数乘上选取它的天数 得到一个最大 权值和
思路: dp[i][j] 表示第i个物品 选取j个左边的物品 的最大权值
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define ll long long int
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int a[];
int dp[][];
int main(){
ios::sync_with_stdio(false);
int n;
while(cin>>n){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
cin>>a[i];
// sum[i]+=a[i];
}
dp[][]=a[n];
dp[][]=a[];
for(int i=;i<=n;i++){
for(int j=n;j>=n-i+;j--)
dp[i][]+=(a[j]*(n-j+));
for(int j=;j<=i;j++){
if(dp[i-][j-]+a[j]*i<dp[i-][j]+a[n-(i--j)]*i){
dp[i][j]=dp[i-][j]+a[n-(i--j)]*i;
}else{
dp[i][j]=dp[i-][j-]+a[j]*i;
}
}
}
int ans=-inf;
for(int i=;i<=n;i++)
ans=max(dp[n][i],ans);
cout<<ans<<endl;
}
return ;
}

poj 3186 Treats for the Cows(dp)的更多相关文章

  1. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  2. POJ 3186 Treats for the Cows (动态规划)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  3. POJ 3186 Treats for the Cows 一个简单DP

    DP[i][j]表示现在开头是i物品,结尾是j物品的最大值,最后扫一遍dp[1][1]-dp[n][n]就可得到答案了 稍微想一下,就可以, #include<iostream> #inc ...

  4. POJ 3186 Treats for the Cows ——(DP)

    第一眼感觉是贪心,,果断WA.然后又设计了一个两个方向的dp方法,虽然觉得有点不对,但是过了样例,交了一发,还是WA,不知道为什么不对= =,感觉是dp的挺有道理的,,代码如下(WA的): #incl ...

  5. POJ 3186 Treats for the Cows

    简单DP dp[i][j]表示的是i到j这段区间获得的a[i]*(j-i)+... ...+a[j-1]*(n-1)+a[j]*n最大值 那么[i,j]这个区间的最大值肯定是由[i+1,j]与[i,j ...

  6. POJ3186 Treats for the Cows —— DP

    题目链接:http://poj.org/problem?id=3186 Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K To ...

  7. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )

    dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...

  8. poj3186 Treats for the Cows

    http://poj.org/problem?id=3186 Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  9. (区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)

    http://poj.org/problem?id=3186   Description FJ has purchased N (1 <= N <= 2000) yummy treats ...

随机推荐

  1. pip ipython启动错误 Fatal error in launcher: Unable to create process using

    完整的错误提示: C:\Users\yyy>ipython3Fatal error in launcher: Unable to create process using '"c:\u ...

  2. MYSQL 表大小限制

    MySQL 3.22限制的表大小为4GB.由于在MySQL 3.23中使用了MyISAM存储引擎,最大表尺寸增加到了65536TB(2567 – 1字节).由于允许的表尺寸更大,MySQL数据库的最大 ...

  3. Cookie-parser

    let express = require('express'); let app =new express(); // 引入cookie-parser; let cookieParser = req ...

  4. Oracle分析函数row_number()等的使用实例

    --分析函数 --rank() over(order by) --值相同,排名相同,序号跳跃 select * from t_account select rank() over(order by u ...

  5. Eclipse中Maven的简单使用

    一.Maven的安装 检查自己的电脑是否安装了maven,在cmd中输入 mvn -v 命令即可查看 安装配置maven  1.解压部署Maven核心程序 ①检查JAVA_HOME环境变量 C:\Wi ...

  6. C# Note8: 设计模式全解

    前言——资源说明 目前网上设计模式的介绍可谓非常之多(各种编程语言的版本),其中不乏精细之作,本文的目的在于搜集和整理C#或C++的设计模式,毕竟思想还是共通的! 设计模式的分类 创建型模式,共五种: ...

  7. Flutter的Appbar

    actions → List一个 Widget 列表,代表 Toolbar 中所显示的菜单,对于常用的菜单,通常使用 IconButton 来表示:对于不常用的菜单通常使用PopupMenuButto ...

  8. springmvc配置文件

    1 springMVC的配置文件路径问题 https://www.cnblogs.com/ysloong/p/6071450.html

  9. Kettle转换工具Windows版安装

    一.简介 Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,绿色无需安装,数据抽取高效稳定. Kettle 中文名称叫水壶,该项目的主程序员MAT ...

  10. FormDestroy 和 FormClose 有什么区别和联系?

    1.窗口的所有资源真正释放时调用 FormDestroy.当你关闭窗口时,VCL会调用FormClose,如果你在FormClose里写Action = caFree,那么VCL会继续调用FormDe ...