自然语言处理之word2vec
在word2vec出现之前,自然语言处理经常把字词转为one-hot编码类型的词向量,这种方式虽然非常简单易懂,但是数据稀疏性非常高,维度很多,很容易造成维度灾难,尤其是在深度学习中;其次这种词向量中任意两个词之间都是孤立的,存在语义鸿沟(这样就不能体现词与词之间的关系)而有Hinton大神提出的Distributional Representation 很好的解决了one-hot编码的主要缺点。解决了语义之间的鸿沟,可以通过计算向量之间的距离来体现词与词之间的关系。Distributional Representation 词向量是密集的。word2vec是一个用来训练Distributional Representation 类型的词向量的一种工具。
1、CBOW与Skip-Gram模型
word2vec模型其实就是简单化的神经网络,主要包含两种词训练模型:CBOW模型和Skip-gram模型。模型的结构图如下(注意:这里只是模型结构,并不是神经网络的结构)
CBOW模型根据中心词W(t) 周围的词来预测中心词;Skip-gram模型则根据中心词W(t) 来预测周围的词。
1)CBOW模型的第一层是输入层,输入的值是周围每个词的one-hot编码形式,隐藏层只是对输出值做了权值加法,没有激活函数进行非线性的转换,输出值的维度和输入值的维度是一致的。
2)Skip-gram模型的第一层是输入层,输入值是中心词的one-hot编码形式,隐藏层只是做线性转换,输出的是输出值的softmax转换后的概率。
神经网络结构如下
神经网络的训练是有监督的学习,因此要给定输入值和输出值来训练神经网络,而我们最终要获得的是隐藏层的权重矩阵。因为隐藏层的输出事实上是每个输入单词的 “嵌入词向量”。我们来看个图
上如中左边的式子是输入词向量和隐藏层权重矩阵的乘积,在做这个乘法时是不会进行矩阵的运算的,而是直接通过输入值中1的位置索引来寻找隐藏层中的权重矩阵中对应的索引的行。
词向量的两个优点:
1)降低输入的维度。词向量的维度一般取100-200,对于大样本时的one-hot向量甚至可能达到10000以上。
2)增加语义信息。两个语义相近的单词的词向量也是很相似的。
2、word2vec API讲解
在gensim中,word2vec 相关的API都在包gensim.models.word2vec中。和算法有关的参数都在类gensim.models.word2vec.Word2Vec中。算法需要注意的参数有:
1) sentences:我们要分析的语料,可以是一个列表,或者从文件中遍历读出(word2vec.LineSentence(filename) )。
2) size:词向量的维度,默认值是100。这个维度的取值一般与我们的语料的大小相关,如果是不大的语料,比如小于100M的文本语料,则使用默认值一般就可以了。如果是超大的语料,建议增大维度。
3) window:即词向量上下文最大距离,window越大,则和某一词较远的词也会产生上下文关系。默认值为5,在实际使用中,可以根据实际的需求来动态调整这个window的大小。
如果是小语料则这个值可以设的更小。对于一般的语料这个值推荐在[5;10]之间。
4) sg:即我们的word2vec两个模型的选择了。如果是0, 则是CBOW模型;是1则是Skip-Gram模型;默认是0即CBOW模型。
5) hs:即我们的word2vec两个解法的选择了。如果是0, 则是Negative Sampling;是1的话并且负采样个数negative大于0, 则是Hierarchical Softmax。默认是0即Negative Sampling。
6) negative:即使用Negative Sampling时负采样的个数,默认是5。推荐在[3,10]之间。这个参数在我们的算法原理篇中标记为neg。
7) cbow_mean:仅用于CBOW在做投影的时候,为0,则算法中的xw为上下文的词向量之和,为1则为上下文的词向量的平均值。在我们的原理篇中,是按照词向量的平均值来描述的。个人比较喜欢用平均值来表示xw,默认值也是1,不推荐修改默认值。
8) min_count:需要计算词向量的最小词频。这个值可以去掉一些很生僻的低频词,默认是5。如果是小语料,可以调低这个值。
9) iter:随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。
10) alpha:在随机梯度下降法中迭代的初始步长。算法原理篇中标记为η,默认是0.025。
11) min_alpha: 由于算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步长值。随机梯度下降中每轮的迭代步长可以由iter,alpha, min_alpha一起得出。这部分由于不是word2vec算法的核心内容,因此在原理篇我们没有提到。
对于大语料,需要对alpha, min_alpha,iter一起调参,来选择合适的三个值。
word2vec是可以进行增量式训练的,因此可以实现一:在输入输入值时可以将数据用生成器的形式导入到模型中;二:可以将数据一个磁盘中读取出来,然后训练完保存模型;之后加载模型再从其他的磁盘上读取数据进行模型的训练。初始化模型的相似度之后,模型就无法再进行增量式训练了,相当于锁定模型了。
3、三个最常见的应用
当训练完模型之后,我们就可以用模型来处理一些常见的问题了,主要包括以下三个方面:
1)找出某一个词向量最相近的集合
model.wv.similar_by_word()
从这里可以衍生出去寻找相似的句子,比如“北京下雨了”,可以先进行分词为{“北京”,“下雨了”},然后找出每个词的前5或者前10个相似的词,比如”北京“的前五个相似词是
{“上海”, “天津",”重庆“,”深圳“,”广州“}
"下雨了"的前五个相似词是
{”下雪了“,”刮风了“,”天晴了“,”阴天了“,”来台风了“}
然后将这两个集合随意组合,可以得到25组不同的组合,然后找到这25组中发生概率最大的句子输出。
2)查看两个词向量的相近程度
model.wv.similarity()
比如查看"北京"和”上海“之间的相似度
3)找出一组集合中不同的类别
model.wv.doesnt_match()
比如找出集合{“上海”, “天津",”重庆“,”深圳“,”北京“}中不同的类别,可能会输出”深圳“,当然也可能输出其他的
自然语言处理之word2vec的更多相关文章
- 基于skip-gram做推荐系统的想法
一.人工智能之自然语言处理 自然语言处理(Natural Language Processing, NLP),是人工智能的分支科学,意图是使计算机具备处理人类语言的能力. “处理人类语言的能力”要达到 ...
- unity--------------------四元数的旋转与原理
[Unity技巧]四元数(Quaternion)和旋转 原文:http://blog.csdn.net/candycat1992/article/details/41254799 四元数介绍 旋转,应 ...
- 论文解读(DeepWalk)《DeepWalk: Online Learning of Social Representations》
一.基本信息 论文题目:<DeepWalk: Online Learning of Social Representations>发表时间: KDD 2014论文作者: Bryan P ...
- 斯坦福NLP课程 | 第1讲 - NLP介绍与词向量初步
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 自然语言处理高手_相关资源_开源项目(比如:分词,word2vec等)
(1) 中科院自动化所的博士,用神经网络做自然语言处理:http://licstar.net (2) 分词项目:https://github.com/fxsjy/jieba(3) 清华大学搞的中文分词 ...
- word2vec 在 非 自然语言处理 (NLP) 领域的应用
word2vec 本来就是用来解决自然语言处理问题的,它在 NLP 中的应用是显然的. 比如,你可以直接用它来寻找相关词.发现新词.命名实体识别.信息索引.情感分析等:你也可以将词向量作为其他模型的输 ...
- 自然语言处理--Word2vec(二)
前一篇,word2vec(一)主要讲了word2vec一些表层概念,以及主要介绍CBOW方法来求解词向量模型,这里主要讲论文 Distributed Representations of Words ...
- 利用Tensorflow进行自然语言处理(NLP)系列之一Word2Vec
同步笔者CSDN博客(https://blog.csdn.net/qq_37608890/article/details/81513882). 一.概述 本文将要讨论NLP的一个重要话题:Word2V ...
- 自然语言处理工具:中文 word2vec 开源项目,教程,数据集
word2vec word2vec/glove/swivel binary file on chinese corpus word2vec: https://code.google.com/p/wor ...
随机推荐
- Netty实战四之传输
流经网络的数据总是具有相同的类型:字节(网络传输——一个帮助我们抽象底层数据传输机制的概念) Netty为它所有的传输实现提供了一个通用的API,即我们可以将时间花在其他更有成效的事情上. 我们将通过 ...
- python面向对象学习(六)类属性、类方法、静态方法
目录 1. 类的结构 1.1 术语 -- 实例 1.2 类是一个特殊的对象 2. 类属性和实例属性 2.1 概念和使用 2.2 属性的获取机制 3. 类方法和静态方法 3.1 类方法 3.2 静态方法 ...
- Again Prime? No Time.(uva10870+数论)
Again Prime? No time.Input: standard inputOutput: standard outputTime Limit: 1 second The problem st ...
- 异步是javascript的精髓
最近做了一个智能家居的APP,目前纯JS代码已经4000多行,不包括任何引入的库.还在不断升级改造中...这个项目到处都是异步.大多数都是3-4层调用.给我的感觉就是异步当你习惯了,你会发现很爽.下面 ...
- 掌握PHP垃圾回收机制
php的垃圾回收机制可以简单总结为 引用计数 写时复制 COW机制, 本文主要和大家分享掌握php垃圾回收机制的知识,希望能帮助到大家. 引用计数基本知识 官网的解答如下 每个php变量存在一个叫”z ...
- 2018-09-06 Java实现英汉词典API初版发布在Maven
在打算批量代码汉化工具 · Issue #86 · program-in-chinese/overview时, 发现没有现成的Java库实现英汉查询功能. 于是开此项目. 源码库: program-i ...
- Apache Beam WordCount编程实战及源码解读
概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流 ...
- Android SharedPreferences增,删,查操作
SharedPreferences是Android平台上一个轻量级的存储类,用来保存应用的一些常用配置,比如Activity状态,Activity暂停时,将此activity的状态保存到SharedP ...
- C# 对象持久化
本文以一个简单的小例子,简述对象持久化的相关知识,仅供学习分享使用,如有不足之处,还请指正. 概述 对象持久化是指将内存中的对象保存到可永久保存的存储设备中(如磁盘)的一种技术. 本文介绍的是除数据库 ...
- MySQL 安装及卸载详细教程
本文采用最新版MySQL8版本作为安装教程演示,本人亲试过程,准确无误.可供读者参考. 下载 官网下载 --> 社区免费服务版下载. 下载Windows安装程序MySQL Installer M ...