部分内容引自https://www.cnblogs.com/stxy-ferryman/p/7779347.html

Tarjan算法不是一个算法而是一类算法

1.求取强连通分量

  强连通分量————有向图的强连通子图

  tarjan算法基于dfs,利用栈的思想,把下面所有的点都遍历完毕后,所能链接的最小祖先节点(可能没有),就是要寻找的强连通分量

  所以我们需要dfn数组存储dfs的遍历顺序,low数组存储这个节点后所有的子孙节点所能到达的最小节点(dfn最小)值

  为了能够得知构成这个强连通分量的所有的点,可以利用栈去记录,因为退的时候,肯定是退到最头上(如果有额外的分支,那么之前肯定早就退栈了)

  当我们遍历的时候初始化时dfn = low = idx这个初始化意思很好懂,如果没有后继节点,值就是这个

  接下来我们可能会面对三种点

  ·没有遍历过的,我们就递归tarjan遍历,然后优化low[u] = min(low[u],low[v])

  ·我们遍历过了,这个点还在栈中,那就代表这个点u可以到达,所以我们更新的时候,low[u] = min(low[u],dfn[v])_____你要知道此时的low[v]是取决于现在的low[u]的因为v在栈中,所以u是v的后继节点,这是一条返祖边

  ·我们遍历过了,这个点不在栈中了,证明这个点经历了一次退栈,形成了一次联通分量,但是不包括u,因为这个点不能到达u,如果这个点可以到达u的话,u又可以到达这个点,那么就不会退栈了(这里的到达都是要经过子孙节点的),所以对于这样的点,不必考虑任何问题

 所以直到遍历完所有的子孙节点我们就可以进行退栈的操作了,那些独立的联通分量的标志就是

  low == dfn

  意思就是对于节点u,其子孙节点所能到达的最大节点就是u,也就是形成了一个回路,环,而且可以保证这个环是最大的

所以说了这么多,以上的算法思想用于求取一个图的强连通分量——最后进行color染色处理

void tarjan(int u,int fa)
{
dfn[u] = low[u] = ++index;
stk[s_cnt++] = u;
instk[u] = true; for(int i = id[u];~i;i = e[i].pre)
{
int v = e[i].to;
if(!dfn[v])
{
tarjan(v,u);
low[u] = min(low[u],low[v]);
}
else if(instk[v] == true)
{
low[u] = min(low[u],dfn[v]);
}
}
if(dfn[u] == low[u])
{
col++;
while(s_cnt > 0 && stk[s_cnt] != u)
{
s_cnt --;
color[stk[s_cnt]] = col;
instk[stk[s_cnt]] = false;
}
}
}

2.tarjan缩点

利用tarjan算法可以把一个图变成单向无环图

这个继承自强连通分量,对于每一个强连通分量,我们能够看出一个超级点,这个超级点的内部可以互相到达,然后根据这个图所表示的含义,通常要去计算超级点的度,最后输出满足题意的超级点内所有的点

和上面的代码一致

3·求割点和桥(割边)

割点:去掉这个点(和这个点外射的所有边),把一个连通图变成多个连通分量

割边:同样的道理,去掉这条边,把一个连通图变成多个连通分量

这时候我们要判断何时是一个割点

  1.当前节点是根节点——从这个节点开始的dfs,所以如果这个点有两个子树,那么就是一个割点

  2.任意节点,如果low[v] >= dfn[u],表示u的这个子孙能够到达的最小祖先节点是比u小的,所以u是子孙v连接祖先的关键点

void tarjan_gedian(int u,int fa)
{
int son = 0;
dfn[u] = low[u] = ++index;
for(int i = id[u];~i;i = e[i].pre)
{
int v = e[i].to;
if(!dfn[v])
{
tarjan(v,u);
        son++;
low[u] = min(low[u],low[v]);
if(u != root && low[v] >= dfn[u])
{
cut_point[u] = 1;
}
else if(u == root && son > 1)
{
cut_point[u] = 1;
}
}
else if(v != fa)对于割点u这是一条回路,且u割去之后毫无影响,所以忽略这样的两点间回路情况
{
low[u] = min(low[u],dfn[v]);
}
}
}

tarjan算法总结的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 点/边 双连通分量---Tarjan算法

    运用Tarjan算法,求解图的点/边双连通分量. 1.点双连通分量[块] 割点可以存在多个块中,每个块包含当前节点u,分量以边的形式输出比较有意义. typedef struct{ //栈结点结构 保 ...

  3. 割点和桥---Tarjan算法

    使用Tarjan算法求解图的割点和桥. 1.割点 主要的算法结构就是DFS,一个点是割点,当且仅当以下两种情况:         (1)该节点是根节点,且有两棵以上的子树;         (2)该节 ...

  4. Tarjan算法---强联通分量

    1.基础知识 在有向图G,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子 ...

  5. (转载)LCA问题的Tarjan算法

    转载自:Click Here LCA问题(Lowest Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两 ...

  6. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  7. [知识点]Tarjan算法

    // 此博文为迁移而来,写于2015年4月14日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxnx.html UPD ...

  8. Tarjan 算法&模板

    Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...

  9. 【小白入门向】tarjan算法+codevs1332上白泽慧音 题解报告

    一.[前言]关于tarjan tarjan算法是由Robert Tarjan提出的求解有向图强连通分量的算法. 那么问题来了找蓝翔!(划掉)什么是强连通分量? 我们定义:如果两个顶点互相连通(即存在A ...

  10. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

随机推荐

  1. .net MVC简洁的登录页面

    初学mvc,参考别人的代码写的 界面效果如下: 代码如下: @{ Layout = null; } <!DOCTYPE html> <html> <head> &l ...

  2. python的bit_length方法

    bit_length方法作用是得到指定数值的二进制的长度数.宽度数 举例: age=1 v=age.bit_length() print(v) 返回结果: 1    #数值1对应的二进制是1,长度1位 ...

  3. Heroku发布前准备

    group :development, :test do gem 'byebug', platform: :mri gem 'sqlite3', '~> 1.3.13' end group :p ...

  4. Failed to install gems via Bundler

    问题:在执行git push heroku master时,程序报错. 解决办法: 1.bundle update 2.git add . 3.git commit -m "message& ...

  5. systemverilog soft constraint

    1.class my_item; rand bit constrainted_random; rand bit usually_one; endclass class my_generator; my ...

  6. [leetcode]68. Text Justification文字对齐

    Given an array of words and a width maxWidth, format the text such that each line has exactly maxWid ...

  7. OO第一次blog

    (1)基于度量来分析自己的程序结构 第一次:Poly:属性 AL<Term>方法 check(格式检查) Poly(构造) merge(合并) compute(求导) Term:属性 co ...

  8. dskinlite(uieasy mfc界面库)使用记录2:绘制动态元素(按钮控件绘制元素动态控制,改变图片和文字)

    效果图:这4个分别是按钮按下后4种状态的效果 第88行是显示默认的按钮文字,没有id,SetWindowText改的就是它了 第87行是左边的图片,id是ico,可以通过程序控制 第89行是蓝色的文字 ...

  9. 如何在SpringBoot项目中使用拦截器

    相比springmvc,springboot中拦截器不需要在xml中配置,只需定义拦截器类 implements HandlerInterceptor 和拦截器拦截路径的配置类extends WebM ...

  10. 密码与安全新技术专题之AI与密码

    20189217 2018-2019-2 <密码与安全新技术专题>第五周作业 课程:<密码与安全新技术专题> 班级: 1892 姓名: 李熹桥 学号:20189214 上课教师 ...