转载自:click here

1.哈夫曼编码的起源:

哈夫曼编码是 1952 年由 David A. Huffman 提出的一种无损数据压缩的编码算法。哈夫曼编码先统计出每种字母在字符串里出现的频率,根据频率建立一棵路径带权的二叉树,也就是哈夫曼树,树上每个结点存储字母出现的频率,根结点到结点的路径即是字母的编码,频率高的字母使用较短的编码,频率低的字母使用较长的编码,使得编码后的字符串占用空间最小。

2.哈夫曼树构造的过程:

首先统计每个字母在字符串里出现的频率,我们把每个字母看成一个结点,结点的权值即是字母出现的频率,我们把每个结点看成一棵只有根结点的二叉树,一开始把所有二叉树都放在一个集合里。接下来开始如下编码:

步骤一:从集合里取出两个根结点权值最小的树 a 和 b,构造出一棵新的二叉树 c,二叉树 c 的根结点的权值为 a 和 b 的根结点权值和,二叉树 c 的左右子树分别是 a 和 b。

步骤二:将二叉树 a 和 b 从集合里删除,把二叉树 c 加入集合里。

重复以上两个步骤,直到集合里只剩下一棵二叉树,最后剩下的就是哈夫曼树了。

我们规定每个有孩子结点的结点,到左孩子结点的路径为 0,到右孩子结点的路径为 1。每个字母的编码就是根结点到字母对应结点的路径。

3.实例模拟哈夫曼树的构造:

例如有这一个字符串“good good study day day up”,现在我们要对字符串进行哈夫曼编码,该字符串一共有 26 个字符,10 种字符,我们首先统计出每个字符的频率,然后按从大到小顺序排列如下(第二列的字符是空格):

我们把每个字符看成一个结点,权值是字符的频率,每个字符开始都是一棵只有根结点的二叉树,如下图。

1.从集合里取出根结点权值最小的两棵树 I 和 J 组成新的二叉树 IJ,根结点权值为 1 + 1 = 2,将二叉树 IJ 加入集合,把 I 和 J 从集合里删除,如下图。

2.从集合里取出根结点权值最小的两棵树 H 和 G 组成新的二叉树 HG,根结点权值为 1 + 2 = 3,将二叉树 HG 加入集合,把 H 和 G 从集合里删除,如下图。

3.从集合里取出根结点权值最小的两棵树 E 和 F 组成新的二叉树 EF,根结点权值为 2 + 2 = 4,将二叉树 EF 加入集合,把 E 和 F 从集合里删除,如下图。

4.从集合里取出根结点权值最小的两棵树 IJ 和 D 组成新的二叉树 IJD,根结点权值为 2 + 3 = 5,将二叉树 IJD 加入集合,把 IJ 和 D 从集合里删除,如下图。

5.从集合里取出根结点权值最小的两棵树 GH 和 C 组成新的二叉树 GHC,根结点权值为 3 + 4 = 7,将二叉树 GHC 加入集合,把 GH 和 C 从集合里删除,如下图。

6.从集合里取出根结点权值最小的两棵树 EF 和 B 组成新的二叉树 EFB,根结点权值为 4 + 5 = 9,将二叉树 EFB 加入集合,把 EF 和 B 从集合里删除,如下图。

7.从集合里取出根结点权值最小的两棵树 IJD 和 A 组成新的二叉树 IJDA,根结点权值为 5 + 5 = 10,将二叉树 IJDA 加入集合,把 IJD 和 A 从集合里删除,如下图。

8.从集合里取出根结点权值最小的两棵树 EFB 和 GHC 组成新的二叉树 EFBGHC,根结点权值为 9 + 7 = 16,将二叉树 EFBGHC 加入集合,把 EFB 和 GHC 从集合里删除,如下图。

9.从集合里取出根结点权值最小的两棵树 EFBGHC 和 IJDA 组成新的二叉树 EFBGHCIJDA,根结点权值为 16 + 10 = 26,将二叉树 EFBGHCIJDA 加入集合,把 EFBGHC 和 IJDA 从集合里删除,如下图。

到这里我们发现集合里就剩一棵二叉树了,那么编码结束,最后这棵二叉树就是我们要得到的哈夫曼树。接下来我们规定非叶子结点的结点,到左子树的路径记为 0,到右子树的路径记为 1,如下图:

根结点到每个叶子结点的路径便是其对应字母的编码了,于是我们可以得到:

下面我们来算一下哈夫曼树的带权路径长度 WPL,也就是每个叶子到根的距离乘以叶子权值结果之和。

WPL = 5 * 2 + 5 * 3 + 4 * 3 + 3 * 3 + 2 * 4 + 2 * 4 + 2 * 4 + 1 * 4 + 1 * 4 + 1 * 4 = 82。

我们来算下如果直接存储字符串需要多少个比特,我们知道一个字符占一个字节,一个字节占 8 个比特,所以一共需要 8 * 26 = 208 个比特。我们再来看看哈夫曼编码需要多少个比特,我们可以发现 WPL 也就是编码后原来字符串所占的比特总长度 82。显然,哈夫曼编码把原数据压缩了好多,而且没有损失。

根据上面的实例分析,我们得出哈夫曼编码的一些性质:

1.在哈夫曼树上,相对来说,权值大的结点离根结点近,权值小的结点离根结点远

2.哈夫曼编码每次从集合里取出根结点权值最小的两棵二叉数构成新的二叉树

3.哈夫曼树的 WPL(树的带权路径长度),等于编码后字符串所占的比特数

4.哈夫曼树上不会存在只有一个孩子结点的结点

(转载)哈夫曼编码(Huffman)的更多相关文章

  1. 数据压缩之经典——哈夫曼编码(Huffman)

    (笔记图片截图自课程Image and video processing: From Mars to Hollywood with a stop at the hospital的教学视频,使用时请注意 ...

  2. 赫夫曼\哈夫曼\霍夫曼编码 (Huffman Tree)

    哈夫曼树 给定n个权值作为n的叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离 ...

  3. 哈夫曼编码(Huffman coding)的那些事,(编码技术介绍和程序实现)

    前言 哈夫曼编码(Huffman coding)是一种可变长的前缀码.哈夫曼编码使用的算法是David A. Huffman还是在MIT的学生时提出的,并且在1952年发表了名为<A Metho ...

  4. 采用霍夫曼编码(Huffman)画出字符串各字符编码的过程并求出各字符编码 --多媒体技术与应用

    题目:有一个字符串:cabcedeacacdeddaaaba,问题: (1)采用霍夫曼编码画出编码的过程,并写出各字符的编码 (2)根据求得的编码,求得各编码需要的总位数 (3)求出整个字符串总编码长 ...

  5. 霍夫曼编码(Huffman)

    题目:有一个字符串:cabcedeacacdeddaaaba,问题: (1)采用霍夫曼编码画出编码的过程,并写出各字符的编码 (2)根据求得的编码,求得各编码需要的总位数 (3)求出整个字符串总编码长 ...

  6. Python 算法(2) 哈夫曼编码 Huffman Encoding

    这个问题原始是用来实现一个可变长度的编码问题,但可以总结成这样一个问题,假设我们有很多的叶子节点,每个节点都有一个权值w(可以是任何有意义的数值,比如它出现的概率),我们要用这些叶子节点构造一棵树,那 ...

  7. 霍夫曼编码(Huffman Coding)

    霍夫曼编码(Huffman Coding)是一种编码方法,霍夫曼编码是可变字长编码(VLC)的一种. 霍夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符 ...

  8. 哈夫曼编码的理解(Huffman Coding)

    哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,可变字长编码(VLC)的一种.Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最 ...

  9. HDU2527 哈夫曼编码

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  10. hdu2527哈夫曼编码

    /* Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...

随机推荐

  1. gulp-uglify 与gulp.watch()配合使用时遇到的重复压缩问题

    今天学习gulp时候,用到gulp-uglify压缩js模块,遇到的一个问题-当用gulp.watch来监听js文件的变动时出现重复压缩的问题 目录结构如下: gulpfile.js代码如下: var ...

  2. 通过使用OpenVPN来构建一个VPN

    首先我们需要简单熟悉一下OpenVPN和VPN概念,方便我们在使用OpenVPN构建VPN时的操作~  VPN概述 VPN,即虚拟专用网络,其功能是:在公用网络上建立专用网络,进行加密通讯.在企业网络 ...

  3. Linux Standards Base LSB

    LSB简介 http://www.ibm.com/developerworks/cn/linux/l-lsb-intr/ http://refspecs.linuxbase.org/ http://t ...

  4. NSURLSession网络请求

    个人感觉在网上很难找到很简单的网络请求.或许是我才疏学浅 ,  所有就有了下面这一段 , 虽然都是代码 , 但是全有注释 . //1/获取文件访问路径 NSString *path=@"ht ...

  5. 一道关于java序列化的问题,看大家知多少————

    问题先放在这里,稍后我会做出解答 已知类有Test和Test2,问两次主程序的输出结果是多少(SerializeUtil只是序列化的工具类) 类Test public class Test imple ...

  6. Linux下ps命令详解 Linux下ps命令的详细使用方法

    http://www.jb51.net/LINUXjishu/56578.html Linux下的ps命令比较常用 Linux下ps命令详解Linux上进程有5种状态:1. 运行(正在运行或在运行队列 ...

  7. HOLOLENS 扫描特效 及得出扫描结果(SurfacePlane)

    HOLOLENS 扫描特效 及得出扫描结果(SurfacePlane) 要求只扫出地板和墙, 由于地板和墙面积较大 扫描结果 HOLOTOOLKIT老版本点在参数调节PlaneFinding.Find ...

  8. N-Queens

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  9. CORS详解

    介绍 由于同源策略的缘故,以往我们跨域请求,会使用诸如JSON-P(不安全)或者代理(设置代理和维护繁琐)的方式.而跨源资源共享(Cross-Origin Resource Sharing)是一个W3 ...

  10. [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...