二分答案+树链剖分+树上差分

我们假设x是最小的花费,可以想到给定x,所有运输计划中花费大于x的计划必须经过虫洞,且最长的一条的花费减去虫洞所在边的花费要小于等于x

那么对于x,虫洞所在的位置肯定是确定的,假设x可以取更小,那么就没有一个合法方案可以放虫洞,x取更大,显然该方案也合法,这是一个明显符合单调性的问题,我们可以用二分答案求解。

其实最大值最小就是答案具有单调性的特征啦。。

通过上述分析,我们可以确定虫洞所在位置就是花费大于x的运输计划的交,即该边被覆盖次数等于花费大于x的运输计划数,那么对于每个x,我们可以用树上边差分的方式来求出交。

如何求最大的花费呢?我们考虑差分时要求LCA,且要求出树上的路径,那么树链剖分就再好不过了!

在dfs1的时候我们就需要吧边权塞给点(便是该点到其父亲的权值),然后通过树链剖分把LCA,和两点花费求出来。最后用max维护最大即可。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 300005;
int n, m, cnt, dfn, head[N], size[N], p[N], son[N], depth[N], top[N], w[N], val[N], id[N], tmp[N];
int tree[N<<2], num, len, ml, ans;
struct Edge { int v, next, w; } edge[N<<1];
struct Ask {
int u, v, lca, dis;
bool operator < (const Ask &rhs) const {
return dis > rhs.dis;
}
} ask[N<<1]; void addEdge(int a, int b, int w){
edge[cnt].v = b, edge[cnt].w = w, edge[cnt].next = head[a], head[a] = cnt ++;
} void dfs1(int s, int fa){
depth[s] = depth[fa] + 1;
p[s] = fa;
size[s] = 1;
int child = -1;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs1(u, s);
size[s] += size[u], val[u] = edge[i].w;
if(size[u] > child) child = size[u], son[s] = u;
}
} void dfs2(int s, int tp){
id[s] = ++dfn;
w[id[s]] = val[s];
top[s] = tp;
if(son[s] != -1) dfs2(son[s], tp);
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == p[s] || u == son[s]) continue;
dfs2(u, u);
}
} void push_up(int rt){
tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
} void buildTree(int rt, int l, int r){
if(l == r){
tree[rt] = w[l];
return;
}
int mid = (l + r) >> 1;
buildTree(rt << 1, l, mid);
buildTree(rt << 1 | 1, mid + 1, r);
push_up(rt);
} int query(int rt, int l, int r, int queryL, int queryR){
if(queryL > queryR) return 0;
if(l == queryL && r == queryR){
return tree[rt];
}
int mid = (l + r) >> 1;
if(queryL > mid) return query(rt << 1 | 1, mid + 1, r, queryL, queryR);
else if(queryR <= mid) return query(rt << 1, l, mid, queryL, queryR);
else return query(rt << 1, l, mid, queryL, mid) +
query(rt << 1 | 1, mid + 1, r, mid + 1, queryR);
} void lca(int x, int y, int k){
int v = 0;
while(top[x] != top[y]){
if(depth[top[x]] < depth[top[y]]) swap(x, y);
v += query(1, 1, n, id[top[x]], id[x]);
x = p[top[x]];
}
if(depth[x] > depth[y]) swap(x, y);
v += query(1, 1, n, id[x] + 1, id[y]);
ask[k].lca = x, ask[k].dis = v;
} void dfs3(int s, int fa){
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs3(u, s);
tmp[s] += tmp[u];
}
if(s != 1 && tmp[s] == num && val[s] > len) len = val[s];
} bool check(int x){
num = 0, len = -INF, ml = -INF;
full(tmp, 0);
int i = 0;
for(; i < m; i ++){
if(ask[i].dis <= x) break;
int u = ask[i].u, v = ask[i].v, f = ask[i].lca;
tmp[u] ++, tmp[v] ++, tmp[f] -= 2;
num ++;
ml = max(ml, ask[i].dis);
}
if(i == 0) return true;
dfs3(1, 0);
return ml - len <= x;
} void solve(){
sort(ask, ask + m);
int l = 0, r = ask[0].dis;
while(l < r){
int mid = (l + r) >> 1;
if(check(mid)) r = mid;
else l = mid + 1;
}
ans = l;
} int main(){ full(head, -1);
full(son, -1);
n = read(), m = read();
for(int i = 0; i < n - 1; i ++){
int u = read(), v = read(), w = read();
addEdge(u, v, w), addEdge(v, u, w);
}
dfs1(1, 0), dfs2(1, 1);
buildTree(1, 1, n);
for(int i = 0; i < m; i ++){
ask[i].u = read(), ask[i].v = read();
//cout << i << " " << ask[i].u << " " << ask[i].v << endl;
lca(ask[i].u, ask[i].v, i);
}
solve();
printf("%d\n", ans);
return 0;
}

BZOJ 4326 运输计划的更多相关文章

  1. NOIP 2015 BZOJ 4326 运输计划 (树链剖分+二分)

    Description 公元 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n− 条双向航道,每条航道建立在两个星球之间,这 n− 条航道连通了 L 国的所有星球. 小 P 掌管一家物流公司, ...

  2. BZOJ 4326 NOIP2015 运输计划(树上差分+LCA+二分答案)

    4326: NOIP2015 运输计划 Time Limit: 30 Sec  Memory Limit: 128 MB Submit: 1388  Solved: 860 [Submit][Stat ...

  3. bzoj 4326: NOIP2015 运输计划

    4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MB Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个 ...

  4. 【BZOJ 4326】【NOIP2015】运输计划

    http://www.lydsy.com/JudgeOnline/problem.php?id=4326 题目描述 公元2044年,人类进入了宇宙纪元. 国有个星球,还有条双向航道,每条航道建立在两个 ...

  5. BZOJ 4326 NOIP2015 运输计划 (二分+树上差分)

    4326: NOIP2015 运输计划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1930  Solved: 1231[Submit][Statu ...

  6. BZOJ 4326:NOIP2015 运输计划(二分+差分+lca)

    NOIP2015 运输计划Description公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所 ...

  7. bzoj 4326: NOIP2015 运输计划(二分+树链剖分)

    传送门 题解: 树链剖分快速求解任意两点间的路径的权值和: 然后,二分答案: 此题的难点是如何快速求解重合路径? 差分数组可以否??? 在此之前先介绍一下相关变量: int fa[maxn]; int ...

  8. BZOJ 4326: NOIP2015 运输计划(二分,树上差分)

    Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1945  Solved: 1243[Submit][Status][Discuss] Descript ...

  9. bzoj 4326: NOIP2015 运输计划【树链剖分+二分+树上差分】

    常数巨大,lg上开o2才能A 首先预处理出运输计划的长度len和lca,然后二分一个长度w,对于长度大于w的运输计划,在树上差分(d[u]+1,d[v]+1,d[lca]-2),然后dfs,找出所有覆 ...

随机推荐

  1. docker创建nginx+php-fpm+mysql环境(一分钟搭建lnmp)

    下载镜像 docker pull bitnami/php-fpm #下载php-fpm镜像 docker pull nginx #下载nginx镜像docker pull mysql:5.5.59 # ...

  2. 如何在C#中使用Dapper(译)

    前言: 对象关系映射(ORM)已经被使用了很长时间,以解决在编程过程中对象模型与数据模型在关系数据库中不匹配的问题. Dapper是由Stack OverFlow团队开发的开源的,轻量级的ORM.相比 ...

  3. P1525 关押罪犯

    基础并查集-- #include<iostream> #include<string.h> #include<algorithm> #include<stdi ...

  4. 论学习IT的基本学习方法

    学习还是要通过实践总结这种方式去不断进步,当然这个思想对于生活中的任何事都是相通的,就像我现在做的就是总结一下自己的学习方法,更多的是针对于IT代码这块知识的总结. 我想通过这种博客总结的方式来不断总 ...

  5. 用C# BigInteger实现的BigDecimal类,终于可以直接做四则运算了。

    https://code.google.com/p/dotnet-big-decimal/ 这是个BigDecimal类的开源项目,支持Operators +, - and *. 俺给改了改,加上了除 ...

  6. 堆排、python实现堆排

    一.堆-完全二叉树 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),是不稳定排序 堆排序中的堆有大顶堆.小顶堆两种.他们都是完 ...

  7. Java Profiling & Profilers

    A Guide to Java Profilers | Baeldunghttps://www.baeldung.com/java-profilers 常用 Java Profiling 工具的分析与 ...

  8. Linux 光盘挂载步骤

    mount -t fs_type device dir 挂载操作 常见的文件系统类型 Windows :ntfs.fat32 Linux:ext3.ext4.xfs 光盘: iso9660 挂载光盘: ...

  9. MySQL 查询语句中自己定义的中文内容在Java Web 中显示为问号

    Java Web 端做查询时,性别字段存的是数字,1代表男,2代表女,取数据时将性别转为汉字显示在页面,sql语句如下,结果发生了问题  select a.emp_id,a.emp_name ,cas ...

  10. Java语言支持的3种变量类型

    类变量(静态变量):独立于方法之外的变量,用 static 修饰. 实例变量(全局变量):独立于方法之外的变量,不过没有 static 修饰. 局部变量:类的方法中的变量. 例子如下: public  ...