题目描述

  定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\)。

  给你\(m\)个图,问你这\(m\)个图组成的集合有多少个子集的异或图为一个连通图。

  \(n\leq 10,m\leq 60\)

题解

  考虑枚举图的子集划分,让被划分到不同子集的点之间没有连边,而在同一个子集里面的点可以连通,可以不连通。

  可以用高斯消元(线性基)得到满足条件的图的个数。设枚举的子集划分有\(k\)个集合,那么容斥系数就是\({(-1)}^{k-1}(k-1)!\)。并把当前的方案数乘以容斥系数计入答案。

  那么容斥系数是怎么来的呢?

  记\(c_i\)为\(i\)个集合的容斥系数。对于每一个联通块个数为\(j\)的图,对枚举到的联通块个数为\(i\)的方案有\(S(j,i)\)的贡献。

  我们只需要让\(\sum_{i=m}^nc(i)S(i,m)=[m=1]\)就可以了。

  可以打表消元消除容斥系数。

  时间复杂度:\(O(B_nn^2m)\),其中\(B_n\)是Bell数的第\(n\)项。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
char s[1010];
int n,m;
ull a[20][20];
int d[20];
ull ans=0;
ull pw[70];
ull fac[70];
ull c[70];
void dfs(int x,int y)
{
if(x>n)
{
int i,j,k;
for(i=0;i<m;i++)
c[i]=0;
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
if(d[i]!=d[j])
{
ll s=a[i][j];
for(k=m-1;k>=0;k--)
if(s&(1ll<<k))
{
if(!c[k])
{
c[k]=s;
break;
}
s^=c[k];
}
}
int num=0;
for(i=0;i<m;i++)
if(!c[i])
num++;
ans+=pw[num]*fac[y-1]*(y&1?1:-1);
return;
}
int i;
for(i=1;i<=y;i++)
{
d[x]=i;
dfs(x+1,y);
}
d[x]=y+1;
dfs(x+1,y+1);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d",&m);
int i,j,k;
int len;
fac[0]=1;
pw[0]=1;
for(i=1;i<=m;i++)
pw[i]=pw[i-1]<<1;
for(i=1;i<=m;i++)
{
scanf("%s",s+1);
if(i==1)
{
len=strlen(s+1);
for(j=2;j<=10;j++)
if(j*(j-1)/2==len)
break;
n=j;
}
int t=0;
for(j=1;j<=n;j++)
for(k=j+1;k<=n;k++)
if(s[++t]=='1')
a[j][k]|=1ll<<(i-1);
}
for(i=1;i<=n;i++)
fac[i]=fac[i-1]*i;
dfs(1,0);
printf("%llu\n",ans);
return 0;
}

【XSY2701】异或图 线性基 容斥原理的更多相关文章

  1. BZOJ 4671 异或图 | 线性基 容斥 DFS

    题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...

  2. bzoj 2115 [Wc2011] Xor 路径最大异或和 线性基

    题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的 ...

  3. 51Nod1577 异或凑数 线性基 构造

    国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了. ...

  4. 【loj114】k大异或和 线性基+特判

    题目描述 给由 $n​$ 个数组成的一个可重集 $S​$ ,每次给定一个数 $k​$ ,求一个集合 $T⊆S​$ ,使得集合 $T​$ 在 $S​$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...

  5. LOJ.114.K大异或和(线性基)

    题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...

  6. LOJ #113. 最大异或和 (线性基)

    题目链接:#113. 最大异或和 题目描述 这是一道模板题. 给由 \(n\) 个数组成的一个可重集 \(S\),每次给定一个数 \(k\),求一个集合 \(T \subseteq S\),使得集合 ...

  7. 51Nod1577 异或凑数 线性基

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1577.html 题意 给定一个长度为 n 的序列. 有 m 组询问,每一组询问给出 L,R,k ,询 ...

  8. 51nod 1577 异或凑数 线性基的妙用

    \(OTZgengyf\)..当场被吊打\(QwQ\) 思路:线性基 提交:\(3\)次 错因:往里面加数时\(tmp.p\)与\(i\)区分不清(还是我太菜了) 题解: 我们对每个位置的线性基如此操 ...

  9. [LOJ113] 最大异或和 - 线性基

    虽然是SB模板但还真是第一次手工(然而居然又被运算符优先级调戏了) #include <bits/stdc++.h> using namespace std; #define int lo ...

随机推荐

  1. python 可调用对象之类实例

    可调用对象,即任何可以通过函数操作符()来调用的对象. python可调用对象大致可以分为4类: 1.函数 python中有三种函数:内建函数(BIFs).用户自定义函数(UDF).lambda表达式 ...

  2. Yii1.1框架关于日志的配置的简单使用

    最近开始接触新项目,新项目用的框架是Yii1.1版本的,通过看框架文档大致熟悉了解了Yii在日志方面的使用. 首先在protected/config/main.php配置文件中加入日志相关配置,如下图 ...

  3. 【学习总结】Master课程 之 虚拟化与云计算

    Section 1- Cloud Computing Introduction-云计算介绍 1-What can Cloud Computing do? - 云计算可以做什么? 服务模式:美国国家标准 ...

  4. 爬虫——scrapy框架

    Scrapy是一个异步处理框架,是纯Python实现的爬虫框架,其架构清晰,模块之间的耦合程度低,可拓展性强,可以灵活完成各种需求.我们只需要定制几个模块就可以轻松实现一个爬虫. 1.架构  Scra ...

  5. UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-25: ordinal not in range(128)

    python报错:UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-25: ordinal not in ...

  6. Tomcat集成Memcached Session Manager方案

    http://repo1.maven.org/maven2/de/javakaffee/msm/memcached-session-manager/2.3.2/memcached-session-ma ...

  7. cent6.x配置主机名及静态网络

    # 修改网卡名为NAME="eth0" [root@jenkins ~]# -persistent-net.rules # This file was automatically ...

  8. 上古神器之Vim编辑器

    在Linux操作环境下进行文本的编辑少不了编辑器vi ,vim,nona... 一. 修改颜色方案 有时候,使用vim打开一个文件,竟然是蓝色的,辨识度相当的差,这个时候,我们可以调整 一下颜色的搭配 ...

  9. 自己用习惯的idea快捷键笔记

    Ctrl + Space 自动完成(win10下冲突不能用,自己换成 Alt + \ ) 切换方法是菜单中依次打开 file -> settings -> keymap,搜索complet ...

  10. [转帖]Ipvsadm参数详解(常用命令)

    Ipvsadm参数详解(常用命令) 2013年11月29日 12:41:40 怀素1980 阅读数:15901   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.cs ...