selected from Theano Doc

Optimizing Scan performance

Minimizing Scan Usage

performan as much of the computation as possible outside of Scan. This may have the effect increasing memory usage but also reduce the overhead introduce by Scan.

Explicitly passing inputs of the inner function to scan

It's more efficient to explicitly pass parameter as non-sequence inputs.

Examples: Gibbs Sampling

Version One:

import theano
from theano import tensor as T W = theano.shared(W_values) # we assume that ``W_values`` contains the
# initial values of your weight matrix bvis = theano.shared(bvis_values)
bhid = theano.shared(bhid_values) trng = T.shared_randomstreams.RandomStreams(1234) def OneStep(vsample) :
hmean = T.nnet.sigmoid(theano.dot(vsample, W) + bhid)
hsample = trng.binomial(size=hmean.shape, n=1, p=hmean)
vmean = T.nnet.sigmoid(theano.dot(hsample, W.T) + bvis)
return trng.binomial(size=vsample.shape, n=1, p=vmean,
dtype=theano.config.floatX) sample = theano.tensor.vector()
values, updates = theano.scan(OneStep, outputs_info=sample, n_steps=10)
gibbs10 = theano.function([sample], values[-1], updates=updates)

Version Two:

W = theano.shared(W_values) # we assume that ``W_values`` contains the
# initial values of your weight matrix bvis = theano.shared(bvis_values)
bhid = theano.shared(bhid_values) trng = T.shared_randomstreams.RandomStreams(1234) # OneStep, with explicit use of the shared variables (W, bvis, bhid)
def OneStep(vsample, W, bvis, bhid):
hmean = T.nnet.sigmoid(theano.dot(vsample, W) + bhid)
hsample = trng.binomial(size=hmean.shape, n=1, p=hmean)
vmean = T.nnet.sigmoid(theano.dot(hsample, W.T) + bvis)
return trng.binomial(size=vsample.shape, n=1, p=vmean,
dtype=theano.config.floatX) sample = theano.tensor.vector() # The new scan, with the shared variables passed as non_sequences
values, updates = theano.scan(fn=OneStep,
outputs_info=sample,
non_sequences=[W, bvis, bhid],
n_steps=10) gibbs10 = theano.function([sample], values[-1], updates=updates)

Deactivating garbage collecting in Scan

Deactivating garbage collecting in Scan can allow it to reuse memory between executins instead of always having to allocate new memory. Scan reuses memory between iterations of the same execution but frees the memory after the last iteration.

config.scan.allow_gc=False

Graph Optimizations

There are patterns that Theano can't optimize. the LSTM tutorial provides an example of optimization that theano can't perform. Instead of performing many matrix multiplications between matrix \(x_t\) and each of the shared msatrices \(W_i,W_c,W_f\) and \(W_o\), the matrixes \(W_{*}\) are merged into a single shared \(W\) and the graph performans a single larger matrix multiplication between \(W\) and \(x_t\). The resulting matrix is then sliced to obtain the results of that the small individial matrix multiplications by a single larger one and thus improves performance at the cost of a potentially higher memory usage.

theano scan optimization的更多相关文章

  1. theano中的scan用法

    scan函数是theano中的循环函数,相当于for loop.在读别人的代码时第一次看到,有点迷糊,不知道输入.输出怎么定义,网上也很少有example,大多数都是相互转载同一篇.所以,还是要看官方 ...

  2. Theano学习-scan循环

    \(1.Scan\) 通用的一般形式,可用于循环 减少和映射(对维数循环)是特殊的 \(scan\) 对输入序列进行 \(scan\) 操作,每一步都能得到一个输出 \(scan\) 能看到定义函数的 ...

  3. theano学习

    import numpy import theano.tensor as T from theano import function x = T.dscalar('x') y = T.dscalar( ...

  4. LSTM 分类器笔记及Theano实现

    相关讨论 http://tieba.baidu.com/p/3960350008 基于教程http://deeplearning.net/tutorial/lstm.html LSTM基本原理http ...

  5. 关于thenao.scan() fn函数参数的说明

    theano.scan()原型: theano.scan( fn, sequences=None, outputs_info=None, non_sequences=None, n_steps=Non ...

  6. Theano学习-梯度计算

    1. 计算梯度 创建一个函数 \(y\) ,并且计算关于其参数 \(x\) 的微分. 为了实现这一功能,将使用函数 \(T.grad\) . 例如:计算 \(x^2\) 关于参数 \(x\) 的梯度. ...

  7. IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO - 学习笔记

    catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 ...

  8. theano安装问题

    WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain` ...

  9. theano使用

    一  theano内置数据类型 只有thenao.shared()类型才有get_value()成员函数(返回numpy.ndarray)? 1. 惯常处理 x = T.matrix('x') # t ...

随机推荐

  1. 使input文本框随其中内容而变化长度的方法

    最近在做商城的前端界面,遇到一个问题,就是使input的宽度能随着输入的内容而跟着变化,刚开始的时候用的是change事件,但是change事件要失去焦点之后才会出现效果,但是我要的是能实现边输入边改 ...

  2. js类型检测总结

    类型检测: 类和对象: Call,Apply,Bind

  3. 兼容IE8 input的placeholder的文字显示

    if( !('placeholder' in document.createElement('input')) ){ $('input[placeholder],textarea[placeholde ...

  4. 360安全卫士造成Sharepoint文档库”使用资源管理器打开“异常

           备注:企业用户还是少用360为妙        有客户反馈:部门里的XP SP2环境客户机全部异常,使用资源管理器打开Sharepoint文档库,看到的界面样式很老土,跟本地文件夹不一样 ...

  5. Unable to simultaneously satisfy constraints.

    在进行版本的迭代更新时,新功能需求需要对主页面的UI进行重新的布局,但是,报了错误,出了好多约束方面的问题: Unable to simultaneously satisfy constraints. ...

  6. swift-字符和字符串

    OC定义字符: char charValue = 'a'; swift定义字符: var charValue : Character = "a" Unicode 国际标准的文本编码 ...

  7. 快速上手Unity原生Json库

    现在新版的Unity(印象中是从5.3开始)已经提供了原生的Json库,以前一直使用LitJson,研究了一下Unity用的JsonUtility工具类的使用,发现使用还挺方便的,所以打算把项目中的J ...

  8. Oracle学习笔记五 SQL命令(三):Group by、排序、连接查询、子查询、分页

    GROUP BY和HAVING子句 GROUP BY子句 用于将信息划分为更小的组每一组行返回针对该组的单个结果 --统计每个部门的人数: Select count(*) from emp group ...

  9. 项目游戏开发日记 No.0x000006(Finish)

    项目开发的最后一周! 突然一下就把游戏收尾了, 就像一个嘎然而止的乐章, 留下的, 是无尽的回味. 余音绕梁的夜晚, 也还想着, 拼命码代码的日子, 和还留在嘴里回味的烈酒的浓香. ————————— ...

  10. BenUtils组件和DbUtils组件

    BenUtils组件和DbUtils组件 [TOC] 1.BenUtils组件 1.1.简介 程序中对javabean的操作很频繁,所有Apache提供了一套开源api,方便javabean的操作!即 ...