MT【309】正弦的平方差公式
在锐角$\Delta ABC$中,角$A,B,C$所对的边分别为$a,b,c$,且满足$b^2-a^2=ac$,则$\dfrac{1}{\tan A}-\dfrac{1}{\tan B}$ 的取值范围是_____
证明:由正弦定理$\sin^2B-\sin^2A=\sin A\cdot\sin C$,即$\sin(B+A)\cdot\sin(B-A)=\sin A\cdot\sin C$,
从而$\sin(B-A)=\sin A,B=2A$,由锐角三角形条件得$\dfrac{\pi}{3}<B<\dfrac{\pi}{2}$
故$\dfrac{1}{\tan A}-\dfrac{1}{\tan B}=\dfrac{\sin B\cos A-\cos B\sin A}{\sin A\sin B}=\dfrac{\sin(B-A)}{\sin A\sin B}=\dfrac{1}{\sin B}\in\left(1,\dfrac{2\sqrt{3}}{3}\right)$
练习:在$\Delta ABC$中,$A,B,C$所对的边分别为$a,b,c$,且$3a^2=c^2-b^2$,则$\tan A\tan B$ 的取值范围____
答案:$(0,\dfrac{1}{2})$,提示由条件得$\tan C=-2\tan B$
MT【309】正弦的平方差公式的更多相关文章
- 一文弄懂神经网络中的反向传播法——BackPropagation
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- 【bzoj3450】Tyvj1952 Easy
题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有 ...
- 初中数学题归纳w
刷完了一张代数 P1 计算 $\left( \frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}- \frac{1}{2 ...
- SpannableString使用详解
TextView算是android开发中最最常用的控件了,有的时候,我们要给一个TextView中的显示的文字设置不同的样式或者响应事件,比如同一个TextView中,有的字是红色,有的字是蓝色,有的 ...
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- R语言 决策树算法
定义: 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解 ...
- 清北澡堂 Day2 下午 一些比较重要的数论知识整理
1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2, ...
- 清北学堂Day2
算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...
随机推荐
- numpy中random的使用
import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...
- 多线程系列之二:Single Thread Execution 模式
一,什么是SingleThreadExecution模式?同一时间内只能让一个线程执行处理 二,例子 1.不安全的情况 用程序模拟 三个人频繁地通过一个只允许一个人经过的门.当人通过时,统计人数便会增 ...
- 使用PHPExcel导出数据库表结构及内容
导出表结构: mysql> desc user ; +----------+--------------+------+-----+---------------------+--------- ...
- 【学习总结】Git学习-参考廖雪峰老师教程九-使用码云
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- 【学亮IT手记】使用Map代替switch...case语句
- CLOUD物料列表查询的一份跟踪
SELECT * FROM (SELECT t0.FNUMBER fnumber, t0_L.FNAME fname, t0_L.FSPECIFICATION fspecification, t0.F ...
- Java 线程的创建和启动
Java 使用 Thread 类代表线程,所有的线程对象都必须是 Thread 类或其子类的实例.每个线程的作用是完成一定的任务,实际上就是执行一段程序流(一段顺序执行的代码). Java 使用线程执 ...
- React 避免重渲染
组件的重新渲染 我们可以在 React 组件中的 props 和 state 存放任何类型的数据,通过改变 props 和 state,去控制整个组件的状态.当 props 和 state 发生变化时 ...
- mongodb的安装方法
下载安装 mongodb官网下载地址:https://www.mongodb.org/downloads#produc...直接下载.msi文件并安装到指定目录即可.我的安装路径是D:\mongodb ...
- CentOS7下Nginx搭建反向代理,并使用redis保存session
1.启动两个tomcat,端口分别为8080,8081 2.配置nginx,vim /usr/local/nginx/conf/nginx.conf 添加如下配置: 3.启动nginx或热加载 启动: ...